Skip to main content

Abstract

Fibers are a continuous material structure that have an extremely high ratio of length to width, and are particularly suitable for fabrication into biomaterial scaffolds for tissue engineering since fibrous structures can morphologically resemble extracellular matrix components in tissues. In addition, fibers can be collected and processed into complex fibrous networks using conventional textile techniques, such as knitting, weaving, or braiding, to create three-dimensional (3D) structures with improved structural and mechanical properties. Recently, there is a growing interest in using nanofabrication techniques to fabricate nanometer-sized fibers for tissue engineering. Nano-sized fibers exhibit enhanced physical and biological properties that are favorable for effective biomaterial scaffolds, compared to micro-sized fibers. While great progress using fibrous scaffolds to grow various human tissues has been made, it is important for scaffold-based tissue engineering to develop the next generation “smart” scaffolds capable of promoting cell-matrix interactions through a bio-inspired surface, and inducing favorable biological activity via controlled release of incorporated biological molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wesolow A, Snyder RW, Textiles. In: von Recum AF, editor. Handbook of Biomaterials Evaluation: Scientific, Technical, and Clinical Testing of Implant Materials. New York: Macmillan, 1986. p. 79–97.

    Google Scholar 

  2. Casey DJ, Lewis OG, Absorbable and Nonabsorbable Sutures. In: von Recum AF, editor. Handbook of Biomaterials Evaluation: Scientific, Technical, and Clinical Testing of Implant Materials. New York: Macmillan, 1986. p. 86–94.

    Google Scholar 

  3. Shalaby SW, Fabrics. In: Ratner BD, Hoffman AS, Shoen FJ, Lemons JE, editors. Biomaterials Science: An Introduction to Materials in Medicine. 2nd ed. Boston: Elsevier Academic Press, 2004. p. 118–124.

    Google Scholar 

  4. Moroni L, de Wijn JR, van Blitterswijk CA. Integrating novel technologies to fabricate smart scaffolds. J Biomater Sci Polym Ed 2008;19:543–572.

    Article  CAS  Google Scholar 

  5. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 2002;60:613–621.

    Article  CAS  Google Scholar 

  6. von der Mark K, Structure, Biosynthesis, and Gene Regulation of Collagens in Cartilage and Bone. In: Seibel MJ, Robins SP, Bilezikian JP, editors. Dynamics of Bone and Cartilage Metabolism. San Diego: Academic Press, 1999. p. 3–29.

    Google Scholar 

  7. Kuivaniemi H, Tromp G, Chu ML, Prockop DJ. Structure of a full-length cDNA clone for the prepro alpha 2(I) chain of human type I procollagen. Comparison with the chicken gene confirms unusual patterns of gene conservation. Biochem J 1988;252:633–640.

    CAS  Google Scholar 

  8. Minary-Jolandan M, Yu MF. Nanoscale characterization of isolated individual type I collagen fibrils: polarization and piezoelectricity. Nanotechnology 2009;20:85706.

    Article  Google Scholar 

  9. An KN, Sun YL, Luo ZP. Flexibility of type I collagen and mechanical property of connective tissue. Biorheology 2004;41:239–246.

    CAS  Google Scholar 

  10. Yang L, Fitie CF, van der Werf KO, Bennink ML, Dijkstra PJ, Feijen J. Mechanical properties of single electrospun collagen type I fibers. Biomaterials 2008;29:955–962.

    Article  CAS  Google Scholar 

  11. Ide A, Sakane M, Chen G, Shimojo H, Ushida T, et al. Collagen hybridization with poly l-lactic acid braid promotes ligament cell migration. Mater Sci Eng C 2001;17:95–99.

    Article  Google Scholar 

  12. Ko FK, Fabrics. In: Wnek GE, Bowlin GL, editors. Encyclopedia of Biomaterials and Biomedical Engineering. New York: Marcel Dekker, 2004. p. 583–602.

    Google Scholar 

  13. Jacobs PF. Stereolithography and other RP&M technologies: from rapid prototyping to rapid tooling. Dearborn, Mich. New York: Society of Manufacturing Engineers in cooperation with the Rapid Prototyping Association of SME; New York, NY: ASME Press, 1996.

    Google Scholar 

  14. Hatch KL. Textile Science. New York: West Publishing Co., 1993. p. 318–370.

    Google Scholar 

  15. Wollina U, Heide M, Muller-Litz W, Obenauf D, Ash J. Functional textiles in prevention of chronic wounds, wound healing and tissue engineering. Curr Probl Dermatol 2003;31:82–97.

    Article  CAS  Google Scholar 

  16. Tuzlakoglu K, Reis RL. Biodegradable polymeric fiber structures in tissue engineering. Tissue Eng Part B Rev 2009;15:17–27.

    Article  CAS  Google Scholar 

  17. Ko FK, Pastore CM, Head AA. Atkins and Pearce Handbook of Industrial Braiding. Covington: Atkins and Pearce, Inc., 1989.

    Google Scholar 

  18. Ko FK. Braiding. In: Engineered Materials Handbook, Volume 1, Composites. Metals Park, OH: ASM International, 1987. p. 519–528

    Google Scholar 

  19. Ko FK. Preform fiber architecture for ceramic-matrix composites. Ceram Bull 1989;68:401–414.

    CAS  Google Scholar 

  20. Ko FK, Soebroto HB, Lei C. 3-D Net Shaped Composites by the 2-Step Braiding Process. The 33rd International SAMPE Symposium; 1988 3/7/1988: SAMPE; 1988. p. 912–921.

    Google Scholar 

  21. Ko FK, Pastore CM, Structure and Properties of an Integrated 3-D Fabric for Structural Composites. In: Vinson J, Taya M, editors. Recent Advances in Composites in the U.S. and Japan. Philadelphia, PA: American Society for Testing and Materials, 1985.

    Google Scholar 

  22. Duval N, Chaput C, A Classification of Prosthetic Ligament Failures. In: Yahia LH, editor. Ligaments and Ligamentoplasties. Berlin: Springer, 1997. p. 167–191.

    Chapter  Google Scholar 

  23. Lu HH, Cooper JA, Jr., Manuel S, Freeman JW, Attawia MA, Ko FK, et al. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials 2005;26:4805–4816.

    Article  CAS  Google Scholar 

  24. Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials 2005;26:1523–1532.

    Article  CAS  Google Scholar 

  25. Guidoin MF, Marois Y, Bejui J, Poddevin N, King MW, Guidoin R. Analysis of retrieved polymer fiber based replacements for the ACL. Biomaterials 2000;21:2461–2474.

    Article  CAS  Google Scholar 

  26. King MW, Soares MB, Guidoin R, The Chemical, Physical and Structural Properties of Synthetic Biomaterials used in Hernia Repair. In: Bendavid R, editor. Prostheses and Abdominal Wall Hernias. Austin: Landes, 1994. p. 191–206.

    Google Scholar 

  27. Klinge U, Klosterhalfen B, Muller M, Anurov M, Ottinger A, Schumpelick V. Influence of polyglactin-coating on functional and morphological parameters of polypropylene-mesh modifications for abdominal wall repair. Biomaterials 1999;20:613–623.

    Article  CAS  Google Scholar 

  28. Marois Y, Cadi R, Gourdon J, Fatouraee N, King MW, Zhang Z, et al. Biostability, inflammatory response, and healing characteristics of a fluoropassivated polyester-knit mesh in the repair of experimental abdominal hernias. Artif Organs 2000;24:533–543.

    Article  CAS  Google Scholar 

  29. Voorhees AB, Jr., Jaretzki A, 3rd, Blakemore AH. The use of tubes constructed from vinyon “N” cloth in bridging arterial defects. Ann Surg 1952;135:332–336.

    Article  Google Scholar 

  30. Szilagyi DE, Elliott JP, Jr., Smith RF, Reddy DJ, McPharlin M. A thirty-year survey of the reconstructive surgical treatment of aortoiliac occlusive disease. J Vasc Surg 1986;3:421–436.

    CAS  Google Scholar 

  31. Hoerstrup SP, Zund G, Sodian R, Schnell AM, Grunenfelder J, Turina MI. Tissue engineering of small caliber vascular grafts. Eur J Cardiothorac Surg 2001;20:164–169.

    Article  CAS  Google Scholar 

  32. Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, et al. Functional arteries grown in vitro. Science 1999;284:489–493.

    Article  CAS  Google Scholar 

  33. Laurencin CT, Khan Y, Kofron M, El-Amin S, Botchwey E, Yu X, et al. The ABJS Nicolas Andry Award: tissue engineering of bone and ligament: a 15-year perspective. Clin Orthop Relat Res 2006;447:221–236.

    Article  Google Scholar 

  34. Cooper JA, Jr., Bailey LO, Carter JN, Castiglioni CE, Kofron MD, Ko FK, et al. Evaluation of the anterior cruciate ligament, medial collateral ligament, achilles tendon and patellar tendon as cell sources for tissue-engineered ligament. Biomaterials 2006;27:2747–2754.

    Article  CAS  Google Scholar 

  35. Cooper JA, Jr., Sahota JS, Gorum WJ, 2nd, Carter J, Doty SB, Laurencin CT. Biomimetic tissue-engineered anterior cruciate ligament replacement. Proc Natl Acad Sci USA 2007;104:3049–3054.

    Article  CAS  Google Scholar 

  36. Lu L, Zhu X, Pederson LG, Jabbari E, Currier B, O Driscoll S, et al. Effects of dynamic fluid pressure on chondrocytes cultured in biodegradable poly(glycolic acid) fibrous scaffolds. Tissue Eng 2005;11:1852–1859.

    Article  CAS  Google Scholar 

  37. Freed LE, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, et al. Biodegradable polymer scaffolds for tissue engineering. Biotechnology (N Y) 1994;12:689–693.

    Article  CAS  Google Scholar 

  38. Moutos FT, Freed LE, Guilak F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat Mater 2007;6:162–167.

    Article  CAS  Google Scholar 

  39. Smith LA, Ma PX. Nano-fibrous scaffolds for tissue engineering. Colloids Surf B Biointerfaces 2004;39:125–131.

    Article  CAS  Google Scholar 

  40. Zhang S. Designer self-assembling Peptide nanofiber scaffolds for study of 3-d cell biology and beyond. Adv Cancer Res 2008;99:335–362.

    Article  CAS  Google Scholar 

  41. Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 2008;29:1989–2006.

    Article  CAS  Google Scholar 

  42. Zhang R, Ma PX. Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures. J Biomed Mater Res 2000;52:430–438.

    Article  CAS  Google Scholar 

  43. Hu J, Liu X, Ma PX. Induction of osteoblast differentiation phenotype on poly(L-lactic acid) nanofibrous matrix. Biomaterials 2008;29:3815–3821.

    Article  CAS  Google Scholar 

  44. Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 2003;21:1171–1178.

    Article  CAS  Google Scholar 

  45. Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001;294:1684–1688.

    Article  CAS  Google Scholar 

  46. Hosseinkhani H, Hosseinkhani M, Tian F, Kobayashi H, Tabata Y. Osteogenic differentiation of mesenchymal stem cells in self-assembled peptide-amphiphile nanofibers. Biomaterials 2006;27:4079–4086.

    Article  CAS  Google Scholar 

  47. Semino CE. Self-assembling peptides: from bio-inspired materials to bone regeneration. J Dent Res 2008;87:606–616.

    Article  CAS  Google Scholar 

  48. Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, et al. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci USA 2002;99:9996–10001.

    Article  CAS  Google Scholar 

  49. Schneider A, Garlick JA, Egles C. Self-assembling peptide nanofiber scaffolds accelerate wound healing. PLoS One 2008;3:e1410.

    Article  Google Scholar 

  50. Rayleigh JWG. Lond Edinburgh Dublin Phil Mag 1882;14:184.

    Article  Google Scholar 

  51. Formhals A. US Patent No. 1,975,504, 1934.

    Google Scholar 

  52. Li WJ, Tuan RS. Fabrication and application of nanofibrous scaffolds in tissue engineering. Curr Protoc Cell Biol 2009;Chapter 25:Unit 25.2.

    Google Scholar 

  53. Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J Electrostat 1995;35:151–160.

    Article  CAS  Google Scholar 

  54. Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer 1999;40:4585–4592.

    Article  CAS  Google Scholar 

  55. Liu HQ, Hsieh YL. Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci B Polym Phys 2002;40:2119–2129.

    Article  CAS  Google Scholar 

  56. Deitzel JM, Kleinmeyer J, Harris D, Tan NCB. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001;42:261–272.

    Article  CAS  Google Scholar 

  57. Demir MM, Yilgor I, Yilgor E, Erman B. Electrospinning of polyurethane fibers. Polymer 2002;43:3303–3309.

    Article  CAS  Google Scholar 

  58. Lee KH, Kim HY, Khil MS, Ra YM, Lee DR. Characterization of nano-structured pol(ε-caprolactone)nonwoven mats via electrospinning. Polymer 2003;44:1287–1294.

    Article  CAS  Google Scholar 

  59. Choi JS, Lee SW, Jeong L, Bae SH, Min BC, Youk JH, et al. Effect of organosoluble salts on the nanofibrous structure of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Int J Biol Macromol 2004;34:249–256.

    Article  CAS  Google Scholar 

  60. Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 2002;43:4403–4412.

    Article  CAS  Google Scholar 

  61. Li D, Ouyang G, McCann JT, Xia Y. Collecting electrospun nanofibers with patterned electrodes. Nano Lett 2005;5:913–916.

    Article  CAS  Google Scholar 

  62. Theron A, Zussman E, Yarin AL. Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology 2001;12:384–390.

    Article  Google Scholar 

  63. Li WJ, Mauck RL, Cooper JA, Yuan X, Tuan RS. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech 2007;40:1686–1693.

    Article  Google Scholar 

  64. Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A 2003;67:531–537.

    Article  Google Scholar 

  65. Schindler M, Ahmed I, Kamal J, Nur EKA, Grafe TH, Young CH, et al. A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture. Biomaterials 2005;26:5624–5631.

    Article  CAS  Google Scholar 

  66. Nur EKA, Ahmed I, Kamal J, Schindler M, Meiners S. Three dimensional nanofibrillar surfaces induce activation of Rac. Biochem Biophys Res Commun 2005;331:428–434.

    Article  Google Scholar 

  67. Li WJ, Danielson KG, Alexander PG, Tuan RS. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J Biomed Mater Res A 2003;67:1105–1114.

    Article  Google Scholar 

  68. Nur EKA, Ahmed I, Kamal J, Schindler M, Meiners S. Three-dimensional nanofibrillar surfaces promote self-renewal in mouse embryonic stem cells. Stem Cells 2006;24:426–433.

    Article  Google Scholar 

  69. Li WJ, Tuli R, Huang X, Laquerriere P, Tuan RS. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 2005;26:5158–5166.

    Article  CAS  Google Scholar 

  70. Rho KS, Jeong L, Lee G, Seo BM, Park YJ, Hong SD, et al. Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 2006;27:1452–1461.

    Article  CAS  Google Scholar 

  71. Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater 2005;72:156–165.

    Article  Google Scholar 

  72. Boland ED, Matthews JA, Pawlowski KJ, Simpson DG, Wnek GE, Bowlin GL. Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front Biosci 2004;9:1422–1432.

    Article  CAS  Google Scholar 

  73. Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 2004;25:1289–1297.

    Article  CAS  Google Scholar 

  74. McManus MC, Boland ED, Simpson DG, Barnes CP, Bowlin GL. Electrospun fibrinogen: feasibility as a tissue engineering scaffold in a rat cell culture model. J Biomed Mater Res A 2007;81:299–309.

    Google Scholar 

  75. Noh HK, Lee SW, Kim JM, Oh JE, Kim KH, Chung CP, et al. Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials 2006;27:3934–3944.

    Article  CAS  Google Scholar 

  76. Subramanian A, Lin HY, Vu D, Larsen G. Synthesis and evaluation of scaffolds prepared from chitosan fibers for potential use in cartilage tissue engineering. Biomed Sci Instrum 2004;40:117–122.

    CAS  Google Scholar 

  77. Um IC, Fang D, Hsiao BS, Okamoto A, Chu B. Electro-spinning and electro-blowing of hyaluronic acid. Biomacromolecules 2004;5:1428–1436.

    Article  CAS  Google Scholar 

  78. Li WJ, Cooper JA, Jr., Mauck RL, Tuan RS. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater 2006;2:377–385.

    Article  Google Scholar 

  79. Zong X, Li S, Chen E, Garlick B, Kim KS, Fang D, et al. Prevention of postsurgery-induced abdominal adhesions by electrospun bioabsorbable nanofibrous poly(lactide-co-glycolide)-based membranes. Ann Surg 2004;240:910–915.

    Article  Google Scholar 

  80. Duan B, Dong C, Yuan X, Yao K. Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide). J Biomater Sci Polym Ed 2004;15:797–811.

    Article  CAS  Google Scholar 

  81. Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Yaremchuk M, et al. Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. Plast Reconstr Surg 1999;104:1014–1022.

    CAS  Google Scholar 

  82. Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005;26:2603–2610.

    Article  CAS  Google Scholar 

  83. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143–147.

    Article  CAS  Google Scholar 

  84. Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003;24:2077–2082.

    Article  CAS  Google Scholar 

  85. Shin M, Yoshimoto H, Vacanti JP. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng 2004;10:33–41.

    Article  CAS  Google Scholar 

  86. Venugopal J, Low S, Choon AT, Sampath Kumar TS, Ramakrishna S. Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers. J Mater Sci Mater Med 2008;19:2039–2046.

    Article  CAS  Google Scholar 

  87. Ko EK, Jeong SI, Rim NG, Lee YM, Shin H, Lee BK. In vitro osteogenic differentiation of human mesenchymal stem cells and in vivo bone formation in composite nanofiber meshes. Tissue Eng A 2008;14:2105–2119.

    Article  CAS  Google Scholar 

  88. Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 2005;26:599–609.

    Article  CAS  Google Scholar 

  89. Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ. The influence of electrospun aligned poly(epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials 2008;29:2899–2906.

    Article  CAS  Google Scholar 

  90. Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD, et al. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 2005;26:1261–1270.

    Article  CAS  Google Scholar 

  91. Kim TG, Park TG. Biomimicking extracellular matrix: cell adhesive RGD peptide modified electrospun poly(D,L-lactic-co-glycolic acid) nanofiber mesh. Tissue Eng 2006;12:221–233.

    Article  CAS  Google Scholar 

  92. Qi H, Hu P, Xu J, Wang A. Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment. Biomacromolecules 2006;7:2327–2330.

    Article  CAS  Google Scholar 

  93. Xie J, Tan RS, Wang CH. Biodegradable microparticles and fiber fabrics for sustained delivery of cisplatin to treat C6 glioma in vitro. J Biomed Mater Res A 2008;85:897–908.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Ju Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Li, WJ., Cooper, J.A. (2011). Fibrous Scaffolds for Tissue Engineering. In: Burdick, J.A., Mauck, R.L. (eds) Biomaterials for Tissue Engineering Applications. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0385-2_3

Download citation

Publish with us

Policies and ethics