Skip to main content

Abstract

The successful engineering of synthetic hydrogels that exhibit key features of the natural extracellular matrices has led to significant advances in the field of tissue engineering. Various chemical and physical approaches have been developed for hydrogel synthesis. While the chemical methods rely on the presence of readily addressable functional groups for the formation of covalent bonds at the crosslinking points, the physical approaches utilize weak and reversible interactions for gelation purposes. In many cases, physical gels need to be covalently stabilized for their long term applications in tissue engineering. Over the past decade, hydrogels have evolved from passive scaffolding materials to bioactive and cell-responsive matrices that play a defining role in the regulation of cellular functions and tissue growth. Novel hydrogels with tunable microstructures, mechanical properties, and degradation rates have been engineered. Biological motifs or soluble factors have been successfully incorporated in the hydrogel matrices to allow for a higher level of cell-matrix communication. These synthesis methods have resulted in the production of a wide variety of functional hydrogels that support the growth of many different tissue types. The development of the next generation biomimetic hydrogels relies on parallel advancements in materials chemistry, cell biology and developmental biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADH:

Adipic acid dihydrazide

BMP-2:

Bone morphogenic protein 2

CD:

Cyclodextrin

CryoSEM:

Cryogenic scanning electron microscopy

DXN:

Doubly crosslinked network

ECM:

Extracellular matrix

EDC:

N,N-(3-dimethylaminopropyl)-N-ethyl carbodiimide

ELP:

Elastin-like polypeptide

Fmoc:

Fluorenylmethoxycarbonyl

GAG:

Glycosaminoglycan

HA:

Hyaluronic acid

HBGF:

Heparin binding growth factor

HBP:

Heparin-binding peptide

HGP:

Hydrogel particle

HGP-P1 :

Perlecan domain I conjugated hydrogel particles

HMDI:

1,6-hexamethylene diisocyanate

HRP:

Horse radish peroxidase

HSPG:

Heparan sulfate proteoglycan

IGF:

Insulin-like growth factor

MMP:

Matrix metalloproteinase

OPF:

Oligo[poly(ethylene glycol) fumarate]

OTMC:

Oligo (trimethylene carbonate)

PCL:

Poly(ε-caprolactone)

PDLA:

Poly(d-lactide)

PEG:

Poly(ethylene glycol)

PEGDA:

Poly(ethylene glycol) diacrylate

PGA:

Poly(glycolic acid)

PLA:

Poly(lactic acid)

PLGA:

Poly(lactic-co-glycolic acid)

PLLA:

Poly(l-lactide)

PlnDI:

Domain I of perlecan

PMAA:

Poly(methacrylic acid)

PAA:

Poly(acrylic acid)

PPF:

Poly(propylene fumarate)

PVA:

Poly(vinyl alcohol)

PVFF:

Porcine vocal fold fibroblast

RGD:

Arginine-Glycine-Aspartic acid

SEM:

Scanning electron microscopy

sGAG:

Synthetic glycosaminoglycan

TGF:

Transforming growth factor

References

  1. Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater 2009;8:457–70.

    CAS  Google Scholar 

  2. Langer R, Vacanti JP. Tissue engineering. Science 1993;260:920–6.

    CAS  Google Scholar 

  3. Langer R, Tirrell DA. Designing materials for biology and medicine. Nature 2004;428:487–92.

    CAS  Google Scholar 

  4. Lutolf MP, Gilbert PM, Blau HM. Designing materials to direct stem-cell fate. Nature 2009;462:433–41.

    CAS  Google Scholar 

  5. Bohidar HB, Dubin P, Osade Y. Polymer Gels: Fundamentals and Applications (ACS Symposium Series). Washington, DC: American Chemical Society; 2003.

    Google Scholar 

  6. Odian G. Principles of Polymerization. 4th ed. Hoboken, NJ: John Wiley & Sons, Inc.; 2004.

    Google Scholar 

  7. Ifkovits JL, Burdick JA. Review: Photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng 2007;13:2369–85.

    CAS  Google Scholar 

  8. Bryant SJ, Nuttelman CR, Anseth KS. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym Ed 2000;11:439–57.

    CAS  Google Scholar 

  9. Williams A, Ibrahim IT. Carbodiimide chemistry – recent advances. Chem Rev 1981;81:589–636.

    CAS  Google Scholar 

  10. Bulpitt P, Aeschlimann D. New strategy for chemical modification of hyaluronic acid: Preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J Biomed Mater Res 1999;47:152–69.

    CAS  Google Scholar 

  11. Kuo JW, Swann DA, Prestwich GD. Chemical modification of hyaluronic-acid by carbodiimides. Bioconjugate Chem 1991;2:232–41.

    CAS  Google Scholar 

  12. Kuijpers AJ, van Wachem PB, van Luyn MJA, Brouwer LA, Engbers GHM, Krijgsveld J, et al. In vitro and in vivo evaluation of gelatin-chondroitin sulphate hydrogels for controlled release of antibacterial proteins. Biomaterials 2000;21:1763–72.

    CAS  Google Scholar 

  13. Liu W, Merrett K, Griffith M, Fagerholm P, Dravida S, Heyne B, et al. Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials 2008;29:1147–58.

    CAS  Google Scholar 

  14. Duan X, Sheardown H. Crosslinking of collagen with dendrimers. J Biomed Mater Res A 2005;75A:510–8.

    CAS  Google Scholar 

  15. March J. Advanced Organc Chemistry. 4th ed. New York, NY: John Wiley & Sons, Inc.; 1992.

    Google Scholar 

  16. Grieshaber SE, Farran AJE, Lin-Gibson S, Kiick KL, Jia XQ. Synthesis and characterization of Elastin-Mimetic hybrid polymers with multiblock, alternating molecular architecture and elastomeric properties. Macromolecules 2009;42:2532–41.

    CAS  Google Scholar 

  17. Annabi N, Mithieux SM, Boughton EA, Ruys AJ, Weiss AS, Dehghani F. Synthesis of highly porous crosslinked elastin hydrogels and their interaction with fibroblasts in vitro. Biomaterials 2009;30:4550–7.

    CAS  Google Scholar 

  18. Welsh ER, Price RR. Chitosan cross-linking with a water-soluble, blocked diisocyanate. 2. Solvates and hydrogels. Biomacromolecules 2003;4:1357–61.

    CAS  Google Scholar 

  19. Nowatzki PJ, Tirrell DA. Physical properties of artificial extracellular matrix protein films prepared by isocyanate crosslinking. Biomaterials 2004;25:1261–7.

    CAS  Google Scholar 

  20. Merrett K, Liu WG, Mitra D, Camm KD, McLaughlin CR, Liu YW, et al. Synthetic neoglycopolymer-recombinant human collagen hybrids as biomimetic crosslinking agents in corneal tissue engineering. Biomaterials 2009;30:5403–8.

    CAS  Google Scholar 

  21. Richards FM, Knowles JR. Glutaraldehyde as a protein cross-linking reagent. J Mol Biol 1968;37:231–3.

    CAS  Google Scholar 

  22. Jia XQ, Colombo G, Padera R, Langer R, Kohane DS. Prolongation of sciatic nerve blockade by in situ cross-linked hyaluronic acid. Biomaterials 2004;25:4797–804.

    CAS  Google Scholar 

  23. Luo Y, Kirker KR, Prestwich GD. Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Control Release 2000;69:169–84.

    CAS  Google Scholar 

  24. Gurski LA, Jha AK, Zhang C, Jia XQ, Farach-Carson MC. Hyaluronic acid-based hydrogels as 3D matrices for in vitro evaluation of chemotherapeutic drugs using poorly adherent prostate cancer cells. Biomaterials 2009;30:6076–85.

    CAS  Google Scholar 

  25. Jia XQ, Yeo Y, Clifton RJ, Jiao T, Kohane DS, Kobler JB, et al. Hyaluronic acid-based microgels and microgel networks for vocal fold regeneration. Biomacromolecules 2006;7:3336–44.

    CAS  Google Scholar 

  26. Lee KY, Bouhadir KH, Mooney DJ. Degradation behavior of covalently cross-linked poly(aldehyde guluronate) hydrogels. Macromolecules 2000;33:97–101.

    CAS  Google Scholar 

  27. Lim DW, Nettles DL, Setton LA, Chilkoti A. In situ cross-linkinig of elastin-like polypeptide block copolymers for tissue repair. Biomacromolecules 2008;9:222–30.

    CAS  Google Scholar 

  28. Charati MB, Ifkovits JL, Burdick JA, Linhardt JG, Kiick KL. Hydrophilic elastomeric biomaterials based on resilin-like polypeptides. Soft Matter 2009;5:3412–6.

    CAS  Google Scholar 

  29. Hermanson GT. Bioconjugate Techniques. 2nd ed. London, UK: Elsevier Inc; 2008.

    Google Scholar 

  30. Sahiner N, Jha AK, Nguyen D, Jia XQ. Fabrication and characterization of cross-linkable hydrogel particles based on hyaluronic acid: potential application in vocal fold regeneration. J Biomater Sci Polym Ed 2008;19:223–43.

    CAS  Google Scholar 

  31. Shu XZ, Prestwich GD. Therapeutic Biomaterials from Chemically Modified Hyaluronan. In: Garg HG, Hales CA, editors. Chemistry and biology of hyaluronan. 1st ed. Oxford: Elsevier Ltd.; 2004. p. 475–504.

    Google Scholar 

  32. Ichi T, Watanabe J, Ooya T, Yui N. Controllable erosion time and profile in poly(ethylene glycol) hydrogels by supramolecular structure of hydrolyzable polyrotaxane. Biomacromolecules 2001;2:204–10.

    CAS  Google Scholar 

  33. Ossipov DA, Piskounova S, Hilborn J. Poly(vinyl alcohol) cross-linkers for in vivo injectable hydrogels. Macromolecules 2008;41:3971–82.

    CAS  Google Scholar 

  34. Liu YC, Shu XZ, Prestwich GD. Biocompatibility and stability of disulfide-crosslinked hyaluronan films. Biomaterials 2005;26:4737–46.

    CAS  Google Scholar 

  35. Khetan S, Katz JS, Burdick JA. Sequential crosslinking to control cellular spreading in 3-dimensional hydrogels. Soft Matter 2009;5:1601–6.

    CAS  Google Scholar 

  36. Hoyle CE, Lee TY, Roper T. Thiol-enes: Chemistry of the past with promise for the future. J Polym Sci Pol Chem 2004;42:5301–38.

    CAS  Google Scholar 

  37. Cramer NB, Bowman CN. Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared. J Polym Sci Pol Chem 2001;39:3311–9.

    CAS  Google Scholar 

  38. Aimetti AA, Machen AJ, Anseth KS. Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery. Biomaterials 2009;30:6048–54.

    CAS  Google Scholar 

  39. Salinas CN, Cole BB, Kasko AM, Anseth KS. Chondrogenic differentiation potential of human mesenchymal stem cells photoencapsulated within poly(ethylene glycol)-arginine-glycine-aspartic acid-serine thiol-methacrylate mixed-mode networks. Tissue Eng 2007;13:1025–34.

    CAS  Google Scholar 

  40. Kolb HC, Finn MG, Sharpless KB. Click chemistry: Diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 2001;40:2004-21.

    CAS  Google Scholar 

  41. Malkoch M, Vestberg R, Gupta N, Mespouille L, Dubois P, Mason AF, et al. Synthesis of well-defined hydrogel networks using Click chemistry. Chem Commun 2006:2774–6.

    Google Scholar 

  42. Liu SQ, Ee PLR, Ke CY, Hedrick JL, Yang YY. Biodegradable poly(ethylene glycol)-peptide hydrogels with well-defined structure and properties for cell delivery. Biomaterials 2009;30:1453–61.

    CAS  Google Scholar 

  43. Ossipov DA, Hilborn J. Poly(vinyl alcohol)-based hydrogels formed by “click chemistry”. Macromolecules 2006;39:1709–18.

    CAS  Google Scholar 

  44. Crescenzi V, Cornelio L, Di Meo C, Nardecchia S, Lamanna R. Novel hydrogels via click chemistry: Synthesis and potential biomedical applications. Biomacromolecules 2007;8:1844–50.

    CAS  Google Scholar 

  45. Agard NJ, Prescher JA, Bertozzi CR. A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of blomolecules in living systems. J Am Chem Soc 2004;126:15046–7.

    CAS  Google Scholar 

  46. Prescher JA, Bertozzi CR. Chemistry in living systems. Nat Chem Biol 2005;1:13–21.

    CAS  Google Scholar 

  47. Johnson JA, Baskin JM, Bertozzi CR, Koberstein JT, Turro NJ. Copper-free click chemistry for the in situ crosslinking of photodegradable star polymers. Chem Commun 2008:3064–6.

    Google Scholar 

  48. DeForest CA, Polizzotti BD, Anseth KS. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat Mater 2009;8:659–64.

    CAS  Google Scholar 

  49. Chujo Y, Sada K, Saegusa T. A novel nonionic hydrogel from 2-methyl-2-oxazoline. 4. Reversible gelation of polyoxazline by means of diels-alder reaction. Macromolecules 1990;23:2636–41.

    CAS  Google Scholar 

  50. Wei HL, Yang Z, Zheng LM, Shen YM. Thermosensitive hydrogels synthesized by fast Diels-Alder reaction in water. Polymer 2009;50:2836–40.

    CAS  Google Scholar 

  51. Yeo Y, Geng WL, Ito T, Kohane DS, Burdick JA, Radisic M. Photocrosslinkable hydrogel for myocyte cell culture and injection. J Biomed Mater Res Part B 2007;81B:312–22.

    CAS  Google Scholar 

  52. Saxon E, Bertozzi CR. Cell surface engineering by a modified Staudinger reaction. Science 2000;287:2007–10.

    CAS  Google Scholar 

  53. Gattas-Asfura KM, Stabler CL. Chemoselective cross-linking and functionalization of alginate via staudinger ligation. Biomacromolecules 2009;10:3122–9.

    CAS  Google Scholar 

  54. Dawson PE, Muir TW, Clarklewis I, Kent SBH. Synthesis of proteins by native chemical ligation. Science 1994;266:776–9.

    CAS  Google Scholar 

  55. Hu BH, Su J, Messersmith PB. Hydrogels cross-linked by native chemical ligation. Biomacromolecules 2009;10:2194–200.

    CAS  Google Scholar 

  56. Su J, Hu BH, Lowe WL, Kaufman DB, Messersmith PB. Anti-inflammatory peptide-functionalized hydrogels for insulin-secreting cell encapsulation. Biomaterials 2010;31:308–14.

    CAS  Google Scholar 

  57. Ehrbar M, Rizzi SC, Schoenmakers RG, San Miguel B, Hubbell JA, Weber FE, et al. Biomolecular hydrogels formed and degraded via site-specific enzymatic reactions. Biomacromolecules 2007;8:3000–7.

    CAS  Google Scholar 

  58. Sanborn TJ, Messersmith PB, Barron AE. In situ crosslinking of a biomimetic peptide-PEG hydrogel via thermally triggered activation of factor XIII. Biomaterials 2002;23:2703–10.

    CAS  Google Scholar 

  59. Sperinde JJ, Griffith LG. Synthesis and characterization of enzymatically-cross-linked poly(ethylene glycol) hydrogels. Macromolecules 1997;30:5255–64.

    CAS  Google Scholar 

  60. Lee F, Chung JE, Kurisawa M. An injectable enzymatically crosslinked hyaluronic acid-tyramine hydrogel system with independent tuning of mechanical strength and gelation rate. Soft Matter 2008;4:880–7.

    CAS  Google Scholar 

  61. Liao SW, Yu TB, Guan ZB. De novo design of saccharide-peptide hydrogels as synthetic scaffolds for tailored cell responses. J Am Chem Soc 2009;131:17638–46.

    CAS  Google Scholar 

  62. Gan TT, Zhang YJ, Guan Y. In situ gelation of P(NIPAM-HEMA) microgel dispersion and its applications as injectable 3D cell scaffold. Biomacromolecules 2009;10:1410–5.

    CAS  Google Scholar 

  63. Chaikof EL. Engineering and material considerations in islet cell transplantation. Annu Rev Biomed Eng 1999;1:103–27.

    CAS  Google Scholar 

  64. Read TA, Sorensen DR, Mahesparan R, Enger PO, Timpl R, Olsen BR, et al. Local endostatin treatment of gliomas administered by microencapsulated producer cells. Nat Biotechnol 2001;19:29–34.

    CAS  Google Scholar 

  65. Cho MH, Kim KS, Ahn HH, Kim MS, Kim SH, Khang G, et al. Chitosan gel as an in situ-forming scaffold for rat bone marrow mesenchymal stem cells in vivo. Tissue Eng 2008;14:1099–108.

    CAS  Google Scholar 

  66. Van Tomme SR, van Steenbergen MJ, De Smedt SC, van Nostrum CF, Hennink WE. Self-gelling hydrogels based on oppositely charged dextran microspheres. Biomaterials 2005;26:2129–35.

    Google Scholar 

  67. Hoare TR, Kohane DS. Hydrogels in drug delivery: Progress and challenges. Polymer 2008;49:1993–2007.

    CAS  Google Scholar 

  68. Mespouille L, Hedrick JL, Dubois P. Expanding the role of chemistry to produce new amphiphilic polymer (co)networks. Soft Matter 2009;5:4878–92.

    CAS  Google Scholar 

  69. Braunecker WA, Matyjaszewski K. Controlled/living radical polymerization: Features, developments, and perspectives. Prog Polym Sci 2007;32:93–146.

    CAS  Google Scholar 

  70. Hawker CJ, Wooley KL. The convergence of synthetic organic and polymer chemistries. Science 2005;309:1200–5.

    CAS  Google Scholar 

  71. Albertsson AC, Varma IK. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 2003;4:1466–86.

    CAS  Google Scholar 

  72. Hennink WE, van Nostrum CF. Novel crosslinking methods to design hydrogels. Adv Drug Deliver Rev 2002;54:13–36.

    CAS  Google Scholar 

  73. He CL, Kim SW, Lee DS. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release 2008;127:189–207.

    CAS  Google Scholar 

  74. Millon LE, Mohammadi H, Wan WK. Anisotropic polyvinyl alcohol hydrogel for cardiovascular applications. J Biomed Mater Res Part B 2006;79B:305–11.

    CAS  Google Scholar 

  75. Yoshihito O. Equilibrium study of polymer-polymer complexation of poly(methacrylic acid) and poly(acrylic acid) with complementary polymers through cooperative hydrogen bonding. J Polym Sci Pol Chem 1979;17:3485–98.

    Google Scholar 

  76. Haglund BO, Joshi R, Himmelstein KJ. An in situ gelling system for parenteral delivery. J Control Release 1996;41:229–35.

    CAS  Google Scholar 

  77. Fujiwara T, Mukose T, Yamaoka T, Yamane H, Sakurai S, Kimura Y. Novel thermo-responsive formation of a hydrogel by stereo-complexation between PLLA-PEG-PLLA and PDLA-PEG-PDLA block copolymers. Macromol Biosci 2001;1:204–8.

    CAS  Google Scholar 

  78. Koopmans C, Ritter H. Formation of physical hydrogels via Hostâ^’guest interactions of β-cyclodextrin polymers and copolymers bearing adamantyl groups. Macromolecules 2008;41:7418–22.

    CAS  Google Scholar 

  79. Ulijn RV, Smith AM. Designing peptide based nanomaterials. Chem Soc Rev 2008;37: 664–75.

    CAS  Google Scholar 

  80. Orbach R, Adler-Abramovich L, Zigerson S, Mironi-Harpaz I, Seliktar D, Gazit E. Self-assembled Fmoc-peptides as a platform for the formation of nanostructures and hydrogels. Biomacromolecules 2009;10:2646–51.

    CAS  Google Scholar 

  81. Schnepp ZAC, Gonzalez-McQuire R, Mann S. Hybrid biocomposites based on calcium phosphate mineralization of self-assembled supramolecular hydrogels. Adv Mater 2006;18:1869–72.

    CAS  Google Scholar 

  82. Zhang S, Holmes TC, DiPersio CM, Hynes RO, Su X, Rich A. Self-complementray oligopeptide matrices support mammalian cell attachment. Biomaterials 1995;16:1385–93.

    Google Scholar 

  83. Holmes TC, de Lacalle S, Su X, Liu GS, Rich A, Zhang SG. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc Natl Acad Sci USA 2000;97:6728–33.

    CAS  Google Scholar 

  84. Kisiday J, Jin M, Kurtz B, Hung H, Semino C, Zhang S, et al. Self-assembling peptide hydrogel fosters chondrocyte extracellular matric production and cell division: implications for cartilage tissue repair. Proc Nat Acad Sci USA 2002;99:9996–10001.

    CAS  Google Scholar 

  85. Semino CE, Merok JR, Crane GG, Panagiotakos G, Zhang SG. Functional differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in three-dimensional peptide scaffolds. Differentiation 2003;71:262–70.

    CAS  Google Scholar 

  86. Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001;294:1684–8.

    CAS  Google Scholar 

  87. Hartgerink JD, Beniash E, Stupp SI. Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci USA 2002;99:5133–8.

    CAS  Google Scholar 

  88. Stupp SI, Donners J, Li LS, Mata A. Expanding frontiers in biomaterials. MRS Bulletin 2005;30:864–73.

    CAS  Google Scholar 

  89. Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 2004;303:1352–5.

    CAS  Google Scholar 

  90. Schneider JP, Pochan DJ, Ozbas B, Rajagopal K, Pakstis L, Kretsinger J. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J Am Chem Soc 2002;124:15030–7.

    CAS  Google Scholar 

  91. Ozbas B, Rajagopal K, Schneider JP, Pochan DJ. Semiflexible chain networks formed via self-assembly of beta-hairpin molecules. Phys Rev Lett 2004;93:268106.

    Google Scholar 

  92. Yucel T, Micklitsch CM, Schneider JP, Pochan DJ. Direct observation of early-time hydrogelation in beta-hairpin peptide self-assembly. Macromolecules 2008;41:5763–72.

    CAS  Google Scholar 

  93. Ozbas B, Kretsinger J, Rajagopal K, Schneider JP, Pochan DJ. Salt-triggered peptide folding and consequent self-assembly into hydrogels with tunable modulus. Macromolecules 2004;37:7331–7.

    CAS  Google Scholar 

  94. Kretsinger JK, Haines LA, Ozbas B, Pochan DJ, Schneider JP. Cytocompatibility of self-assembled [beta]-hairpin peptide hydrogel surfaces. Biomaterials 2005;26:5177–86.

    CAS  Google Scholar 

  95. Salick DA, Kretsinger JK, Pochan DJ, Schneider JP. Inherent antibacterial activity of a peptide-based beta-hairpin hydrogel. J Am Chem Soc 2007;129:14793–9.

    CAS  Google Scholar 

  96. Megeed Z, Cappello J, Ghandehari H. Genetically engineered silk-elastinlike protein polymers for controlled drug delivery. Adv Drug Deliver Rev 2002;54:1075–91.

    CAS  Google Scholar 

  97. Haider M, Cappello J, Ghandehari H, Leong KW. In vitro chondrogenesis of mesenchymal stem cells in recombinant silk-elastinlike hydrogels. Pharm Res 2008;25:692–9.

    CAS  Google Scholar 

  98. Banwell EF, Abelardo ES, Adams DJ, Birchall MA, Corrigan A, Donald AM, et al. Rational design and application of responsive alpha-helical peptide hydrogels. Nat Mater 2009;8:596–600.

    CAS  Google Scholar 

  99. Petka WA, Harden JL, McGrath KP, Wirtz D, Tirrell DA. Reversible hydrogels from self-assembling artificial proteins. Science 1998;281:389–92.

    CAS  Google Scholar 

  100. Shen W, Zhang KC, Kornfield JA, Tirrell DA. Tuning the erosion rate of artificial protein hydrogels through control of network topology. Nat Mater 2006;5:153–8.

    CAS  Google Scholar 

  101. Kopecek J. Smart and genetically engineered biomaterials and drug delivery systems. Eur J Pharm Sci 2003;20:1–16.

    CAS  Google Scholar 

  102. Kopecek J. Hydrogel biomaterials: A smart future? Biomaterials 2007;28:5185–92.

    CAS  Google Scholar 

  103. Wang C, Stewart RJ, Kopecek J. Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 1999;397:417–20.

    CAS  Google Scholar 

  104. Miyata T, Asami N, Uragami T. A reversibly antigen-responsive hydrogel. Nature 1999;399:766–9.

    CAS  Google Scholar 

  105. Capila I, Linhardt RJ. Heparin-protein interactions. Angew Chem Int Ed 2002;41:390–412.

    CAS  Google Scholar 

  106. Fromm JR, Hileman RE, Caldwell EEO, Weiler JM, Linhardt RJ. Pattern and spacing of basic amino acids in heparin binding sites. Arch Biochem Biophys 1997;343:92–100.

    CAS  Google Scholar 

  107. Seal BL, Panitch A. Physical polymer matrices based on affinity interactions between peptides and polysaccharides. Biomacromolecules 2003;4:1572–82.

    CAS  Google Scholar 

  108. Seal BL, Panitch A. Viscoelastic behavior of environmentally sensitive biomimetic polymer matrices. Macromolecules 2006;39:2268–74.

    CAS  Google Scholar 

  109. Yamaguchi N, Kiick KL. Polysaccharide-poly(ethylene glycol) star copolymer as a scaffold for the production of bioactive hydrogels. Biomacromolecules 2005;6:1921–30.

    CAS  Google Scholar 

  110. Zhang L, Furst EM, Kiick KL. Assembly of hydrogels with controlled protein delivery profiles via the use of peptide-polysaccharide interactions. J Control Release 2006;114:130–42.

    CAS  Google Scholar 

  111. Yamaguchi N, Zhang L, Chae BS, Palla CS, Furst EM, Kiick KL. Growth factor mediated assembly of cell receptor-responsive hydrogels. J Am Chem Soc 2007;129:3040–1.

    CAS  Google Scholar 

  112. Stevens MM, George JH. Exploring and engineering the cell surface interface. Science 2005;310:1135–8.

    CAS  Google Scholar 

  113. Kong HJ, Alsberg E, Kaigler D, Lee KY, Mooney DJ. Controlling degradation of hydrogels via the size of cross-linked junctions. Adv Mater 2004;16:1917–21.

    CAS  Google Scholar 

  114. Freudenberg U, Hermann A, Welzel PB, Stirl K, Schwarz SC, Grimmer M, et al. A star-PEG-heparin hydrogel platform to aid cell replacement therapies for neurodegenerative diseases. Biomaterials 2009;30:5049–60.

    CAS  Google Scholar 

  115. Bencherif SA, Siegwart DJ, Srinivasan A, Horkay F, Hollinger JO, Washburn NR, et al. Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization. Biomaterials 2009;30:5270–8.

    CAS  Google Scholar 

  116. Jia XQ, Kiick KL. Hybrid multicomponent hydrogels for tissue engineering. Macromol Biosci 2009;9:140–56.

    CAS  Google Scholar 

  117. Jha AK, Hule RA, Jiao T, Teller SS, Clifton RJ, Duncan RL, et al. Structural analysis and mechanical characterization of hyaluronic acid-based doubly cross-linked networks. Macromolecules 2009;42:537–46.

    CAS  Google Scholar 

  118. Huang T, Xu HG, Jiao KX, Zhu LP, Brown HR, Wang HL. A novel hydrogel with high mechanical strength: A macromolecular microsphere composite hydrogel. Adv Mater 2007;19:1622–6.

    CAS  Google Scholar 

  119. Martin L, Alonso M, Girotti A, Arias FJ, Rodriguez-Cabello JC. Synthesis and characterization of macroporous thermosensitive hydrogels from recombinant elastin-like polymers. Biomacromolecules 2009;10:3015–22.

    CAS  Google Scholar 

  120. Keskar V, Marion NW, Mao JJ, Gemeinhart RA. In vitro evaluation of macroporous hydrogels to facilitate stem cell infiltration, growth, and mineralization. Tissue Eng A 2009;15:1695–707.

    CAS  Google Scholar 

  121. Plieva FM, Ekstrom P, Galaev IY, Mattiasson B. Monolithic cryogels with open porous structure and unique double-continuous macroporous networks. Soft Matter 2008;4:2418–28.

    CAS  Google Scholar 

  122. Liu XH, Ma PX. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials 2009;30:4094–103.

    CAS  Google Scholar 

  123. Chicurel ME, Chen CS, Ingber DE. Cellular control lies in the balance of forces. Curr Opin Cell Biol 1998;10:232–9.

    CAS  Google Scholar 

  124. Discher DE, Janmey P, Wang Y-L. Tissue cells feel and respond to the stiffness of their substrate. Science 2005;310:1139–43.

    CAS  Google Scholar 

  125. Engler AJ, Griffin MA, Sen S, Bonnetnann CG, Sweeney HL, Discher DE. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 2004;166:877–87.

    CAS  Google Scholar 

  126. Ingber DE. Cellular mechanotransduction: putting all the pieces together again. FASEB J 2006;20:811–27.

    CAS  Google Scholar 

  127. Kung C. A possible unifying principle for mechanosensation. Nature 2005;436:647–54.

    CAS  Google Scholar 

  128. Kopecek J. Hydrogels: From soft contact lenses and implants to self-assembled nanomaterials. J Polym Sci Pol Chem 2009;47:5929–46.

    CAS  Google Scholar 

  129. Smith KE, Parks SS, Hyjek MA, Downey SE, Gall K. The effect of the glass transition temperature on the toughness of photopolymerizable (meth)acrylate networks under physiological conditions. Polymer 2009;50:5112–23.

    CAS  Google Scholar 

  130. Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T. Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clay. Macromolecules 2003;36:5732–41.

    CAS  Google Scholar 

  131. Gong JP, Katsuyama Y, Kurokawa T, Osada Y. Double-network hydrogels with extremely high mechanical strength. Adv Mater 2003;15:1155–8.

    CAS  Google Scholar 

  132. Tanaka Y, Gong JP, Osada Y. Novel hydrogels with excellent mechanical performance. Prog Polym Sci 2005;30:1–9.

    CAS  Google Scholar 

  133. Okumura Y, Ito K. The polyrotaxane gel: A topological gel by figure-of-eight cross-links. Adv Mater 2001;13:485–7.

    CAS  Google Scholar 

  134. Osada Y, Gong JP. Soft and wet materials: Polymer gels. Adv Mater 1998;10:827–37.

    CAS  Google Scholar 

  135. Yang W, Furukawa H, Gong JP. Highly extensible double-network gels with self-assembling anisotropic structure. Adv Mater 2008;20:4499–503.

    CAS  Google Scholar 

  136. Zhang C, Aung A, Liao LQ, Varghese S. A novel single precursor-based biodegradable hydrogel with enhanced mechanical properties. Soft Matter 2009;5:3831–4.

    CAS  Google Scholar 

  137. Vrhovski B, Weiss AS. Biochemistry of tropoelastin. Eur J Biochem 1998;258:1–18.

    CAS  Google Scholar 

  138. Aaron BB, Gosline JM. Elastin as a random-netowkr elastomer – a mechanical and optical analysis of single elastin fibers. Biopolymers 1981;20:1247–60.

    CAS  Google Scholar 

  139. Fleming WW, Sullivan CE, Torchia DA. Characterization of molecular motions in C13-labeled aortic elastin by C12-H1 magnetic double resonance. Biopolymers 1980;19:597–617.

    CAS  Google Scholar 

  140. Gosline JM. Hydrophobic ineraction and a model for elasticity of elastin. Biopolymers 1978;17:677–95.

    CAS  Google Scholar 

  141. Tamburro AM, Guantieri V. Classical and fractal description of elastin structure. In: Rossi C, Tiezzi E, editors. Amsterdam: Elsevier; 1991. p. 391.

    Google Scholar 

  142. Urry DW, Hugel T, Seitz M, Gaub HE, Sheiba L, Dea J, et al. Elastin: A representative ideal protein elastomer. Philos Trans R Soc Lond B Biol Sci 2002;357:169–84.

    CAS  Google Scholar 

  143. Lillie MA, Gosline JM. The effects of hydration on the dynamic mechanical properties of elastin. Biopolymers 1990;29:1147–60.

    CAS  Google Scholar 

  144. Eglin D, Mortisen D, Alini M. Degradation of synthetic polymeric scaffolds for bone and cartilage tissue repairs. Soft Matter 2009;5:938–47.

    CAS  Google Scholar 

  145. Falco EE, Patel M, Fisher JP. Recent developments in cyclic acetal biomaterials for tissue engineering applications. Pharm Res 2008;25:2348–56.

    CAS  Google Scholar 

  146. Kim JK, Lee KW, Hefferan TE, Currier BL, Yaszemski MJ, Lu LC. Synthesis and evaluation of novel biodegradable hydrogels based on poly(ethylene glycol) and sebacic acid as tissue engineering scaffolds. Biomacromolecules 2008;9:149–57.

    CAS  Google Scholar 

  147. Benoit DSW, Durney AR, Anseth KS. Manipulations in hydrogel degradation behavior enhance osteoblast function and mineralized tissue formation. Tissue Eng 2006;12:1663–73.

    CAS  Google Scholar 

  148. Jo YS, Gantz J, Hubbell JA, Lutolf MP. Tailoring hydrogel degradation and drug release via neighboring amino acid controlled ester hydrolysis. Soft Matter 2009;5:440–6.

    CAS  Google Scholar 

  149. Kasper FK, Tanahashi K, Fisher JP, Mikos AG. Synthesis of poly(propylene fumarate). Nat Protoc 2009;4:518–25.

    CAS  Google Scholar 

  150. Zhang JX, Skardal A, Prestwich GD. Engineered extracellular matrices with cleavable crosslinkers for cell expansion and easy cell recovery. Biomaterials 2008;29:4521–31.

    CAS  Google Scholar 

  151. Kloxin AM, Kasko AM, Salinas CN, Anseth KS. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 2009;324:59–63.

    CAS  Google Scholar 

  152. Lutolf MP, Hubbell JA. Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules 2003;4:713–22.

    CAS  Google Scholar 

  153. Sakiyama-Elbert SE, Hubbell JA. Functional biomaterials: Design of novel biomaterials. Annu Rev Mater Res 2001;31:183–201.

    CAS  Google Scholar 

  154. West JL, Hubbell JA. Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 1999;32:241–4.

    CAS  Google Scholar 

  155. Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics. Proc Natl Acad Sci USA 2003;100:5413–8.

    CAS  Google Scholar 

  156. Lutolf MP, Raeber GP, Zisch AH, Tirelli N, Hubbell JA. Cell-responsive synthetic hydrogels. Adv Mater 2003;15:888–92.

    CAS  Google Scholar 

  157. Li Q, Wang J, Shahani S, Sun DDN, Sharma B, Elisseeff JH, et al. Biodegradable and photocrosslinkable polyphosphoester hydrogel. Biomaterials 2006;27:1027–34.

    CAS  Google Scholar 

  158. Wachiralarpphaithoon C, Iwasaki Y, Akiyoshi K. Enzyme-degradable phosphorylcholine porous hydrogels cross-linked with polyphosphoesters for cell matrices. Biomaterials 2007;28:984–93.

    CAS  Google Scholar 

  159. Wang DA, Williams CG, Yang F, Cher N, Lee H, Elisseeff JH. Bioresponsive phosphoester hydrogels for bone tissue engineering. Tissue Eng 2005;11:201–13.

    CAS  Google Scholar 

  160. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005;23:47–55.

    CAS  Google Scholar 

  161. Gullberg D, Ekblom P. Extracellular matrix and its receptors during development. Int J Dev Biol 1995;39:845–54.

    CAS  Google Scholar 

  162. Hersel U, Dahmen C, Kessler H. RGD modified polymers: Biomaterials for stimulated cell adhesion and beyond. Biomaterials 2003;24:4385–415.

    CAS  Google Scholar 

  163. Kraehenbuehl TP, Zammaretti P, Van der Vlies AJ, Schoenmakers RG, Lutolf MP, Jaconi ME, et al. Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: Systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials 2008;29:2757–66.

    CAS  Google Scholar 

  164. Halstenberg S, Panitch A, Rizzi S, Hall H, Hubbell JA. Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: A cell adhesive and plasm in-degradable biosynthetic material for tissue repair. Biomacromolecules 2002;3:710–23.

    CAS  Google Scholar 

  165. Gonen-Wadmany M, Oss-Ronen L, Seliktar D. Protein-polymer conjugates for forming photopolymerizable biomimetic hydrogels for tissue engineering. Biomaterials 2007;28:3876–86.

    CAS  Google Scholar 

  166. Peyton SR, Kim PD, Ghajar CM, Seliktar D, Putnam AJ. The effects of matrix stiffness and RhoA on the phenotypic plasticity of smooth muscle cells in a 3-D biosynthetic hydrogel system. Biomaterials 2008;29:2597–607.

    CAS  Google Scholar 

  167. Schmidt O, Mizrahi J, Elisseeff J, Seliktar D. Immobilized fibrinogen in PEG hydrogels does not improve chondrocyte-mediated matrix deposition in response to mechanical stimulation. Biotechnol Bioeng 2006;95:1061–9.

    CAS  Google Scholar 

  168. Shapira-Schweitzer K, Seliktar D. Matrix stiffness affects spontaneous contraction of cardiomyocytes cultured within a PEGylated fibrinogen biomaterial. Acta Biomater 2007;3:33–41.

    CAS  Google Scholar 

  169. Sarig-Nadir O, Seliktar D. Compositional alterations of fibrin-based materials for regulating in vitro neural outgrowth. Tissue Eng A 2008;14:401–11.

    CAS  Google Scholar 

  170. Dikovsky D, Bianco-Peled H, Seliktar D. The effect of structural alterations of PEG-fibrinogen hydrogel scaffolds on 3-D cellular morphology and cellular migration. Biomaterials 2006;27:1496–506.

    CAS  Google Scholar 

  171. Laurent TCE. The Chemistry, Biology, and Medical Applications of Hyaluronan and its Derivatives. Miami: Portland Press; 1998.

    Google Scholar 

  172. Leach JB, Schmidt CE. Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds. Biomaterials 2005;26:125–35.

    CAS  Google Scholar 

  173. Varghese OP, Sun WL, Hilborn J, Ossipov DA. In situ cross-linkable high molecular weight hyaluronan-bisphosphonate conjugate for localized delivery and cell-specific targeting: A hydrogel linked prodrug approach. J Am Chem Soc 2009;131:8781–3.

    CAS  Google Scholar 

  174. Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G. Hyaluronic acid hydrogen for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci USA 2007;104:11298–303.

    CAS  Google Scholar 

  175. Chung C, Beecham M, Mauck RL, Burdick JA. The influence of degradation characteristics of hyaluronic acid hydrogels on in vitro neocartilage formation by mesenchymal stem cells. Biomaterials 2009;30:4287–96.

    CAS  Google Scholar 

  176. Jia XQ, Burdick JA, Kobler J, Clifton RJ, Rosowski JJ, Zeitels SM, et al. Synthesis and characterization of in situ cross-linkable hyaluronic acid-based hydrogels with potential application for vocal fold regeneration. Macromolecules 2004;37:3239–48.

    CAS  Google Scholar 

  177. Masters KS, Shah DN, Leinwand LA, Anseth KS. Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells. Biomaterials 2005;26:2517–25.

    CAS  Google Scholar 

  178. Cai S, Liu Y, Zheng Shu X, Prestwich GD. Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials 2005;26:6054–67.

    CAS  Google Scholar 

  179. Serban MA, Prestwich GD. Synthesis of hyaluronan haloacetates and biology of novel cross-linker-free synthetic extracellular matrix hydrogels. Biomacromolecules 2007;8:2821–8.

    CAS  Google Scholar 

  180. Farran AJE, Teller SS, Jha AK, Hule R, Jiao T, Clifton RJ, et al. Three Dimensional culture of vocal fold fibroblasts: Effects of matrix composition and microstructure on cellular functions. Tissue Eng Epub ahead of print; PMID: 20064012.

    Google Scholar 

  181. Biondi M, Ungaro F, Quaglia F, Netti PA. Controlled drug delivery in tissue engineering. Adv Drug Deliv Rev 2008;60:229–42.

    CAS  Google Scholar 

  182. Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K. The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 2008;33:448–77.

    CAS  Google Scholar 

  183. Goldberg M, Langer R, Jia XQ. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed 2007;18:241–68.

    CAS  Google Scholar 

  184. Farach-Carson MC, Hecht JT, Carson DD. Heparan sulfate proteoglycans: key players in cartilage biology. Crit Rev Eukaryot Gene Expr 2005;15:29–48.

    CAS  Google Scholar 

  185. Jha AK, Yang WD, Kirn-Safran CB, Farach-Carson MC, Jia XQ. Perlecan domain I-conjugated, hyaluronic acid-based hydrogel particles for enhanced chondrogenic differentiation via BMP-2 release. Biomaterials 2009;30:6964–75.

    CAS  Google Scholar 

  186. Norton LW, Tegnell E, Toporek SS, Reichert WM. In vitro characterization of vascular endothelial growth factor and dexamethasone releasing hydrogels for implantable probe coatings. Biomaterials 2005;26:3285–97.

    CAS  Google Scholar 

  187. Holland TA, Tabata Y, Mikos AG. In vitro release of transforming growth factor-beta 1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels. J Control Release 2003;91:299–313.

    CAS  Google Scholar 

  188. Holland TA, Tabata Y, Mikos AG. Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J Control Release 2005;101:111–25.

    CAS  Google Scholar 

  189. Holland TA, Bodde EWH, Baggett LS, Tabata Y, Mikos AG, Jansen JA. Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J Biomed Mater Res A 2005;75A:156–67.

    CAS  Google Scholar 

  190. Park H, Temenoff JS, Holland TA, Tabata Y, Mikos AG. Delivery of TGF-beta 1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 2005;26:7095–103.

    CAS  Google Scholar 

  191. Huebsch N, Mooney DJ. Inspiration and application in the evolution of biomaterials. Nature 2009;462:426–32.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the US National Institutes of Health (National Institute on Deafness and Other Communication Disorders) and the US National Science Foundation (Division of Materials Research, Biomaterials Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinqiao Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Grieshaber, S.E., Jha, A.K., Farran, A.J.E., Jia, X. (2011). Hydrogels in Tissue Engineering. In: Burdick, J.A., Mauck, R.L. (eds) Biomaterials for Tissue Engineering Applications. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0385-2_2

Download citation

Publish with us

Policies and ethics