Skip to main content
  • 3242 Accesses

Abstract

Stem cell engineering has enormous potential to study developmental processes, disease progression, drug screening, and to provide new therapeutics. The interaction of stem cells with their microenvironment plays an important role in determining the stem cell fate. One of the most important environmental factors is the extracellular matrix, which defines the biochemical and biophysical niche from which the stem cells receive various regulatory signals. Artificial matrices based on natural and synthetic materials have been developed to direct stem cell fate such as proliferation and differentiation. Some of these approaches are being currently explored clinically and other more sophisticated multi-functional biomimetic materials with defined properties are currently under development. In this chapter we discuss some of the recent trends in the development of biomaterials and their applications in directing self-renewal and differentiation of stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuchs E, Tumbar T, Guasch G. Socializing with neighbors: Stem cells and their niche. Cell 2004;116:769–778.

    CAS  Google Scholar 

  2. Dawes-Hoang RE, Wieschaus EF. Cell and development biology – A shared past, an interwined future. Dev Cell 2001;1:27–36.

    CAS  Google Scholar 

  3. Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: A dynamic view. Dev Biol 2010;341:126–140.

    CAS  Google Scholar 

  4. Hwang NS, Varghese S, Elisseeff J. Controlled differentiation of stem cells. Adv Drug Deliv Rev 2008;60:199–214.

    CAS  Google Scholar 

  5. Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol, 2006;7:211–214.

    CAS  Google Scholar 

  6. Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater 2009;8:457–470.

    CAS  Google Scholar 

  7. Ott HC, Matthiesen TS, Goh S-K, Black L, Kren SM, Netoff TI, Taylor DA. Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nat Med 2007;14:213–221.

    Google Scholar 

  8. Grayson WL, Fröhlich M, Yeager K, Bhumiratana S, Chan ME, Cannizzaro C, Wan LQ, Liu XS, Guo XE, Vunjak-Novakovic G. Engineering anatomically shaped human bone grafts. Proc Natl Acad Sci USA 2010;107:3299–3304.

    CAS  Google Scholar 

  9. Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, Dodson A, Martorell J, Bellini S, Parnigotto PP, Dickinson SC, Hollander AP, Mantero S, Conconi MT, Birchall MA. Clinical transplantation of a tissue-engineering airway. Lancet 2008;372:2023–2030.

    Google Scholar 

  10. Datta N, Pham QP, Sharma U, Sikavitsas VI, Jansen JA, Mikos AG. In vitro generated extracellular matrix and fluid shear stress synergistically enhance a 3D osteogenic differentiation. Proc Natl Acad Sci USA 2006;103:2488–2493.

    CAS  Google Scholar 

  11. Pham, QP, Kasper FK, Mistry AS, Sharma S, Yasko AW, Jansen JA, Mikos AG. Analysis of the osteoconductive capacity and angiogenicity of an in vitro generated extracellular matrix. J Biomed Mater Res A 2009;88:295–303.

    Google Scholar 

  12. Hoshiba T, Kawazoe N, Tateishi T, Chen G. Development of stepwise osteogenesis-mimicking matrices for the regulation of mesenchymal stem cell functions. J Biol Chem 2009;284:31164–31173.

    CAS  Google Scholar 

  13. Kleinman HK, McGarvey ML, Liotta LA, Robey PG, Tryggvason K, Martin GR. Isolation and characterization of type IV procollagen, laminin, heparin sulfate proteoglycans from the EHS sarcoma. Biochemistry 1982;21:6188–6193.

    CAS  Google Scholar 

  14. Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 2001;19:971–974.

    CAS  Google Scholar 

  15. Brafman DA, Shah KD, Fellner T, Chien S, Willert K. Defining long-term maintenance conditions of human embryonic stem cells with arrayed cellular microenvironment technology. Stem Cells Dev 2009;18:1141–1154.

    Google Scholar 

  16. Cowan CA, Klimanskaya I, McMahon J, Atienza J, Witmyer J, Zucker JP, Wang S, Morton CC, McMahon AP, Powers D, Melton DA. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 2004;350:1353–1356.

    CAS  Google Scholar 

  17. Braam SR, Zeinstra L, Litjens S, Oostwaard DW-V, Brink SVD, Laake LV, Lebrin F, Kats P, Hochstenbach R, Passier R, Sonnenberg A, Mummery CL. Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via αvβ5 integrin. Stem Cells 2008;26:2257–2265.

    CAS  Google Scholar 

  18. Miyazaki T, Futaki S, Hasegawa K, Kawasaki M, Sanzen N, Hayashi M, Kawase E, Sekiguchi K, Nakatsuji N, Suemori H. Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochem Biophy Res Commun 2008;375:27–32.

    CAS  Google Scholar 

  19. Domogatskaya A, Rodin S, Boutaud A, Tryggvason K. Laminin-511 not -332, -111 or -411 enables mouse embryonic stem cell self-renewal in vitro. Stem Cells 2008;26:2800–2809.

    CAS  Google Scholar 

  20. Hayashi Y, Furue MK, Okamoto T, Ohnuma K, Myoishi Y, Fukuhara Y, Abe T, Sato JD, Hata R-I, Asashima M. Integrins regulate mouse embryonic stem cell self-renewal. Stem Cells 2007;25:3005–3015.

    CAS  Google Scholar 

  21. Ma W, Tavakoli T, Derby E, Serebryakova Y, Rao MS, Mattson MP. Cell-extracellular matrix interactions regulate neural differentiation of human embryonic stem cells. BMC Dev Biol 2008;8:90 (1–13)

    Google Scholar 

  22. Svendsen KH, Koc MHJ. X-ray diffraction evidence of collagen molecular packing and crosslinking in fibrils of rat tendon observed by synchrotron radiation. EMBO J 1982;1: 669–674.

    CAS  Google Scholar 

  23. Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: Influence of collagen type II extracellular matrix on MSC chondrogensis. Biotechnol Bioeng 2006;93:1152–1163.

    CAS  Google Scholar 

  24. Ma W, Fitzgerald W, Liu Q, O’Shaughnessy TJ, Maric D, Lin HJ, Alkon DL, Barker JL. CNS stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels. Exp Neurol 2004;190:276–288.

    CAS  Google Scholar 

  25. Pöschl E, Schlötzer-Schrehardt U, Brachvogel B, Saito K,Ninomiya Y, Mayer U. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during initial development. Development 2004;131:1619–1628.

    Google Scholar 

  26. Schenke-Layland K, Angelis E, Rhodes KE, Heydarkhan-Hagvall S, Mikkola HK, Maclellan WR. Collagen IV induces trophoectoderm differentiation of mouse embryonic stem cells. Stem Cells 2007;25:1529–1538.

    CAS  Google Scholar 

  27. Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurug T, Naito M, Nakao K, Nishikawa S-I. Flk-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 2000;408:92–96.

    CAS  Google Scholar 

  28. Wang Y, Kim H-J, Vunjak-Novakovic G, Kaplan DL. Stem cell based tissue engineering with silk biomaterials. Biomaterials 2006;27:6064–6082.

    CAS  Google Scholar 

  29. Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci USA 2007;104:11298–11303.

    CAS  Google Scholar 

  30. Kutty JK, Webb K. Mechanomimetic hydrogels for vocal fold lamina propria regeneration. J Biomater Sci Polym Ed 2009;20:737–756.

    CAS  Google Scholar 

  31. Chung C, Burdick JA. Influence of three dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis. Tissue Eng 2009;15:243–254.

    CAS  Google Scholar 

  32. Fedorovich NE, Oudshoorn MH, Geemen DV, Hennink WE, Alblas J, Dhert WJA. The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials 2009;30: 344–353.

    CAS  Google Scholar 

  33. Ragetly GR, Griffon DJ, Lee H, Fredericks LP, Gordon-Evans W, Chung YS. Effect of chitosan scaffold microstructure on mesenchymal stem cell chondrogenesis. Acta Biomater 2010;6:1430–1436.

    CAS  Google Scholar 

  34. Wang N, Adams G, Buttery L, Falcone FH, Stolnik S. Alginate encapsulation technology supports embryonic stem cell differentiation into insulin-producing cells. J Biotechnol 2009;144:304–312.

    CAS  Google Scholar 

  35. Varghese S, Hwang NS, Canver AC, Theprungsirikul P, Lin DW, Elisseeff J. Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol 2008;27:12–21.

    CAS  Google Scholar 

  36. Chen G, Liu D, Tadokoro M, Hirochika R, Ohgushi H, Tanaka J, Tateishi T. Chondrogenic differentiation of human mesenchymal stem cells cultured in a cobweb-like biodegradable scaffold. Biochem Biophy Res Commun 2004;322:50–55.

    CAS  Google Scholar 

  37. Benoit DSW, Durney AR, Anseth KS. The effect of heparin-functionalized hydrogels on three-dimensional human mesenchymal stem cell osteogenic differentiation. Biomaterials 2007;28:66–77.

    CAS  Google Scholar 

  38. Uygun BE, Stojsih SE, Matthew HWT. Effects of immobilized glycosaminoglycans on the proliferation and differentiation of human mesenchymal stem cells. Tissue Eng 2009;15A: 3499–3512.

    Google Scholar 

  39. Bacakova L, Filova E, Rypacek F, Svorcik V, Stary V. Cell adhesion on artificial materials for tissue engineering. Physiol Res 2004;53 (Suppl 1):S35–S45.

    Google Scholar 

  40. Nuttelman CR, Tripodi MC, Anseth KS. Synthetic hydrogel niches that promote hMSC viability. Matrix Biol 2005;24:208–218.

    CAS  Google Scholar 

  41. Li YJ, Chung EH, Rodriguez RT, Firpo MT, Healy KE. Hydrogels as artificial matrices for human embryonic stem cell self-renewal. J Biomed Mater Res A 2006;79:1–5.

    Google Scholar 

  42. Lee ST, Yun JI, Jo YS, Mochizuki M, Vlies A, Kontos S, Ihm JE, Lim JM, Hubbell JA. Engineering integrin signaling for promoting embryonic stem cell self-renewal in a precisely defined niche. Biomaterials 2010;31:1219–1226.

    CAS  Google Scholar 

  43. Derda R, Li L, Orner BP, Lewis RL, Thomson JA, Kiessling LL. Defined substrates for human embryonic stem cell growth identified from surface arrays. ACS Chem Biol 2007;2:347–355.

    CAS  Google Scholar 

  44. Alberti K, Davey RE, Onishi K, George S, Salchert K, Seib FK, Bornhäuser M, Pompe T, Nagy A, Werner C, Zandstra PW. Functional immobilization of signaling protein enables control of stem cell fate. Nat Methods 2008;7:645–650.

    Google Scholar 

  45. Hill E, Boontheekul T, Mooney DJ. Regulating activation of transplanted cells controls tissue regeneration. Proc Natl Acad Sci USA 2006;103:2494–2499.

    CAS  Google Scholar 

  46. Silva GA, Czeisler C, Krista L, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 2004;303:1352–1355.

    CAS  Google Scholar 

  47. Lee HJ, Yu C, Chansakul T, Hwang NS, Varghese S, Yu SM, Elisseeff JH. Enhanced chondrogenesis of mesenchymal stem cells in collagen mimetic peptide-mediated microenvironment. Tissue Eng 2008;14:1843–1851.

    CAS  Google Scholar 

  48. Hwang NS, Varghese S, Zhang Z, J Elisseeff J. Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate modified hydrogels. Tissue Eng 2006;12:2695–2706.

    CAS  Google Scholar 

  49. Salinas CN, Anseth KS. The enhancement of chondrogenic differentiation of human mesenchymal stem cells by enzymatically regulated RGD functionalities. Biomaterials 2008;29: 2370–2377.

    CAS  Google Scholar 

  50. Salinas CN, Anseth KS. Decorin moieties tethered into PEG networks induce chondrogenesis of human mesenchymal stem cells. J Biomed Mat Res A 2009;90:456–464.

    Google Scholar 

  51. Yang F, Williams CG, Wang D, Lee H, Manson PN, Elisseeff JH. The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials 2005;26:5991–5998.

    CAS  Google Scholar 

  52. Shin H, Temenoff JS, Bowden GC, Zygourakis K, Farach-Carson MC, Yaszemski MJ, Mikos AG. Osteogenic differentiation of rat bone marrow stromal cells cultured on Arg-Gly-Asp modified hydrogels without dexamethasone and β-glycerol phosphate. Biomaterials 2005;26: 3645–3654.

    CAS  Google Scholar 

  53. Kundu AK, Khatiwala CB, Putnam AJ. Extracellular matrix remodeling, integrin expression, and downstream signaling pathways influence the osteogenic differentiation of mesenchymal stem cells on poly(lactide-co-glycolide) substrates. Tissue Eng 2009;15A:273–283.

    Google Scholar 

  54. Hsiong SX, Boontheekul T, Huebsch N, Mooney DJ. Cyclic arginine-glycine-aspartate peptides enhance three dimensional stem cell osteogenic differentiation. Tissue Eng 2009; 15A:263–272.

    Google Scholar 

  55. Lee JS, Lee JS, Murphy WL. Modular peptides promote human mesenchymal stem cell differentiation on biomaterial surfaces. Acta Biomater 2010;6:21–28.

    CAS  Google Scholar 

  56. Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 1997;385:537–540.

    CAS  Google Scholar 

  57. Lutolf MP, Raeber JP, Zisch AH, Tirelli N, Hubbell JA. Cell-responsive synthetic hydrogels. Adv Mater 2003;15:888–892.

    CAS  Google Scholar 

  58. Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics. Proc Natl Acad Sci USA 2003;100:5413–5418.

    CAS  Google Scholar 

  59. Kloxin AM, Kasko AM, Salinas CN, Anseth KS. Photodegradabel hydrogels for dynamic tuning of physical and mechanical properties. Science 2009;324:59–63.

    CAS  Google Scholar 

  60. Levenberg S, Huang NF, Lavik E, Rogers AB, Itskovitz-Eldor J, Langer R. Differentiation of human embryonic stem cells on three dimensional polymer scaffolds. Proc Natl Acad Sci USA 2003;100:12741–12746.

    CAS  Google Scholar 

  61. Lee JG, Lim SA, Croll T, Williams G, Lui S, Cooper-White J, McQuade LR, Mathiyalagan B, Tuch BE. Transplantation of 3D scaffolds seeded with human embryonic stem cells: Biological features of surrogate tissue and teratoma-forming potential. Regen Med 2007;2:289–300.

    Google Scholar 

  62. Phillips JE, Petrie TA, Creighton FP, García AJ. Human mesenchymal stem cell differentiation on self-assembled monolayers presenting different surface chemistries. Acta Biomater 2010;6:12–20.

    CAS  Google Scholar 

  63. Benoit DSW, Schwartz MP, Durney AR, Anseth KS. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mater 2008;7: 816–823.

    CAS  Google Scholar 

  64. Chastain SR, Kundu AK, Dhar S, Calvert JW, Putnam AJ. Adhesion of mesenchymal stem cells to polymer scaffolds occurs via distinct ECM ligands and controls their osteogenic differentiation. J Biomed Mater Res A 2006;78:73–85.

    Google Scholar 

  65. Chua K-N, Chai C, Leeb P-C, Ramakrishna S, Leong KW, Mao H-Q. Functional nanofibers scaffolds with different spacers modulate adhesion and expansion of cryopreserved umbilical cord blood hematopoietic stem/progenitor cells. Exp Hematol 2007;35:771–781.

    CAS  Google Scholar 

  66. Harrison J, Pattanawong S, Forsythe JS, Gross KA, Nisbet DR, Behc H, Scott TF, Trounson AO, Mollard R. Colonization and maintenance of murine embryonic stem cells on poly (α-hydroxy esters). Biomaterials 2004;25:4963–4970.

    CAS  Google Scholar 

  67. Cao Y, Vacanti JP, Paige KT, Upton J, Vacanti CA. Transplantation of chondrocytes utilizing polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg 1997;100:297–302.

    CAS  Google Scholar 

  68. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cytoplasty. Lancet 2006;367:1241–1246.

    Google Scholar 

  69. Warnke PH, Springer ING, Wiltfang J, Acil Y, Eufinger H, Wehmöller M, Russo PAJ, Bolte H, Sherry E, Behrens E, Terheyden H. Growth and transplantation of a custom vascularized bone graft in a man. Lancet 2004;364:766–770.

    CAS  Google Scholar 

  70. Lin C-C, Metters AT. Hydrogels in controlled release formulations : Network design and mathematical modeling. Adv Drug Deliv Rev 2006;58:1379–1408.

    CAS  Google Scholar 

  71. Newman KD, McBurney MW. Poly (D,L lactic-co-glycolic acid) microsphere as biodegradable microcarriers for pluripotent stem cells. Biomaterials 2004;25:5763–5771.

    CAS  Google Scholar 

  72. Carpenedo RL, Bratt-Leal AM, Marklein RA, Seaman SA, Bowen NJ, McDonald JF, McDevitt TC. Homogeneous and organized differentiation within embryoid bodies induced by microsphere-mediated delivery of small molecules. Biomaterials 2009;30:2507–2515.

    CAS  Google Scholar 

  73. Borselli C, Storrie H, Benesch-Lee F, Shvartsman D, Cezar C, Lichtman JW, Vandenburgh HH, Mooney DJ. Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc Natl Acad Sci USA 2010:107:3287–3292.

    CAS  Google Scholar 

  74. Mercado AE, Ma J, He X, Jabbari E. Release characteristics and osteogenic activity of recombinant human bone morphogenic protein-2 grafted to novel self-assembled poly(lactide-co-glycolide furmarate) nanoparticles. J Control Release 2009;140:148–156.

    CAS  Google Scholar 

  75. Wang F, Li Z, Tamama Z, Sen CK, Guan J. Fabrication and characterization of prosurvival growth factor releasing, anisotropic scaffolds for enhanced mesenchymal stem cell survival/growth and orientation. Biomacromolecules 2009;10:2609–2618.

    CAS  Google Scholar 

  76. Fan VH, Au A, Tamama K, Littrell R, Richardson LB, Wright JW, Wells A, Griffith LG. Tethered epidermal growth factor provides a survival advantage to mesenchymal stem cells. Stem Cells 2007;25:1241–1251.

    CAS  Google Scholar 

  77. Marcantonio NA, Boehm CA, Rozic RJ, Au A, Wells A, Muschler GF, Griffith LG. The influence of tethered epidermal growth factor on connective tissue progenitor colony formation. Biomaterials 2009;30:4629–4638.

    CAS  Google Scholar 

  78. Benoit DSW, Collins SD, Anseth KS. Multifunctional hydrogels that promote osteogenic human mesenchymal stem cell differentiation through stimulation and sequestering of bone morphogenic protein 2. Adv Funct Mater 2007;17:2085–2093.

    CAS  Google Scholar 

  79. Hubbell JA, Thomas SN, Swartz MA. Materials engineering through immunomodulation. Nature 2009;462:449–460.

    CAS  Google Scholar 

  80. Lin C-C, Metters AT, Anseth KS. Functional PEG-peptide hydrogels to modulate local inflammation induced by the pro-inflammatory cytokine TNFα. Biomaterials 2009;30:4907–4914.

    CAS  Google Scholar 

  81. Lin C-C, Boyer PD, Aimetti AA, Anseth KS. Regulating MCP-1 diffusion in affinity hydrogels for enhancing immune-isolation. J Control Release 2010;142:384–391.

    CAS  Google Scholar 

  82. Ingber DE. Cellular mechanotransduction: Pulling all the pieces together again. FASEB J 2006;20:811–827.

    CAS  Google Scholar 

  83. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006;126:677–689.

    CAS  Google Scholar 

  84. Khatiwala CB, Kim PD, Peyton SR, Putnam AJ. ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhOA and ROCK. J Bone Miner Res 2009;24: 886–898.

    CAS  Google Scholar 

  85. Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, Healy KE. Substrate modulus directs neural stem cell behavior. Biophys J 2008;95:4426–4438.

    CAS  Google Scholar 

  86. Banerjee A, Arha M, Choudhary S, Ashton RS, Bhatia SR, Schaffer DV, Kane RS. The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 2009;30:4695–4699.

    CAS  Google Scholar 

  87. Teixeira AI, Ilkhanizadeh S, Wigenius JA, Duckworth JK, Inganäs O, Hermanson O. The promotion of neuronal maturation on soft substrates. Biomaterials 2009;30:4567–4572.

    CAS  Google Scholar 

  88. Wang L-S, Chung JE, Chan PP-Y, Kurisawa M. Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials 2010;31:1148–1157.

    Google Scholar 

  89. Evans ND, Minelli C, Gentleman E, LaPointe V, Patankar SN, Kallivretaki M, Chen X, Roberts CJ, Stevens MM. Substrate stiffness affects early differentiation events in embryonic stem cells. Eur Cell Mater 2009;18:1–14.

    CAS  Google Scholar 

  90. Battista S, Guarnieri D, Borselli C, Zeppetelli S, Borzacchiello A, Mayol L, Gerbasio D, Keene DR, Ambrosio L, Netti PA. The effect of matrix composition of 3D constructs on embryonic stem cell differentiation. Biomaterials 2006;26:6194–6207.

    Google Scholar 

  91. Winer JP, Janmey PA, McCormick ME, Funaki M. Bone marrow-derived mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli. Tissue Eng 2009;15:147–154.

    CAS  Google Scholar 

  92. Rowlands AS, George PA, Cooper-White JJ. Directing osteogenic and myogenic differentiation of MSCs : Interplay of stiffness and adhesive ligand presentation. Am J Physiol Cell Physiol 2008;295:1037–1044.

    Google Scholar 

  93. Hynes SR, Rauch MF, Bertram JP, Lavik EB. A library of tunable poly(ethylene glycol)/poly(L-lysine) hydrogels to investigate the material cues that influence neural stem cell differentiation. J Biomed Mat Res A 2008;89:499–509.

    Google Scholar 

  94. Kloxin AM, Benton JA, Anseth KA. In site elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials 2010;31:1–8.

    CAS  Google Scholar 

  95. Burdick JA, Vunjak-Novakovic G. Engineered microenvironments for controlled stem cell differentiation. Tissue Eng 2009;15:205–219.

    CAS  Google Scholar 

  96. Yim EKF, Darling EM, Kulangara K, Guilak F, Leong KW. Nanotopography-induced changes in focal adhesions, cytoskeletal organization and mechanical properties of human mesenchymal stem cells. Biomaterials 2010;31:1299–1306.

    CAS  Google Scholar 

  97. Yim EKF, Pang SW, Leong KW. Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res 2007;313:1820–1829.

    CAS  Google Scholar 

  98. Recknor JB, Sakaguchi DS, Mallapragada SK. Directed growth and selective differentiation of neural progenitor cells on micropatterned polymer substrates. Biomaterials 2006;27:4098–4108.

    CAS  Google Scholar 

  99. Gerecht S, Bettinger CJ, Zhang Z, Borenstein JT, Vunjak-Novakovic G, Langer R. The effect of actin disrupting agents on contact guidance of human embryonic stem cells. Biomaterials 2007;28:4068–4077.

    CAS  Google Scholar 

  100. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Chris DW, Wilkinson CDW, Oreffo RO. The control of human mesenchymal stem cell differentiation using nanoscale symmetry and disorder. Nat Mater 2007;6:997–1003.

    CAS  Google Scholar 

  101. Gelain F, Horii A, Zhang A. Designer self-assembling peptide scaffolds for 3-D tissue cell cultures and regenerative medicines. Macromol Biosci 2007;7:544–551.

    CAS  Google Scholar 

  102. Dang JM, Leong KW. Myogenic induction of aligned mesenchymal stem cell sheets by culture on thermally responsive electrospun nanofibers. Adv Mater 2007;19:2775–2779.

    CAS  Google Scholar 

  103. Li W-J, Tuli R, Huang X, Laquerriere P, Tuan RS. Multi-lineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffolds. Biomaterials 2005;26: 5158–5166.

    CAS  Google Scholar 

  104. Li W-J, Jiang YJ, Tuan RS. Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size. Tissue Eng 2006;12:1775–1784.

    CAS  Google Scholar 

  105. Shih Y-R, Chen C-N, Tsai S-W, Wang YJ, Lee OK. Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells 2006;24:2391–2397.

    CAS  Google Scholar 

  106. Smith LA, Liu X, Hu J, Wang P, Ma PX. Enhancing osteogenic differentiation of mouse embryonic stem cells by nanofibers. Tissue Eng 2009;15:1855–1864.

    CAS  Google Scholar 

  107. Jan E, Kotov NA. Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano Lett 2007;7:1123–1128.

    CAS  Google Scholar 

  108. McCullen SD, Stevens DR, Roberts WA, Clarke LI, Bernack SH, Gorga RE, Loboa EG. Characterization of electrospun nanocomposite scaffolds and biocompatibility with adipose-derived human mesenchymal stem cells. Int J Nanomedicine 2007;2:253–263.

    CAS  Google Scholar 

  109. Mohr JC, de Pablo JJ, Palecek SP. 3-D microwell culture of human embryonic stem cells. Biomaterials 2006;27:6032–6042.

    CAS  Google Scholar 

  110. Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell–matrix adhesions to the third dimension. Science 2001;294:1708–1712.

    CAS  Google Scholar 

  111. Abbott A. Biology’s new dimension. Nature 2003;424:870–872.

    CAS  Google Scholar 

  112. Hwang NS, Kim MK, Sampattavanich S, Baek JH, Zhang Z, Elisseeff J. Effects of three-dimensional culture and growth factors on chondrogenic differentiation of murine embryonic stem cells. Stem Cells 2006;24:284–291.

    CAS  Google Scholar 

  113. Tanaka H, Murphy CL, Murphy C, Kimura M, Kawai S, Polak JM. Chondrogenic differentiation of murine embryonic stem cells: Effect of culture conditions and dexamethasone. J Cell Biochem 2004;93:454–462.

    CAS  Google Scholar 

  114. Liu H, Jian LJ, Roy K. Effect of 3D scaffold and dynamic culture condition on the global gene expression profile of mouse embryonic stem cells. Biomaterials 2006;27:5978–5989.

    CAS  Google Scholar 

  115. Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R, Trakhtenbrot L, Paz N, Koren-Michowitz M, Waldman D, Leider-Trejo L, Toren A, Constantini S, Rechavi G. Donor-derived brain tumor following nueral stem cell transplantation in an ataxia telangiectasia patient. PLoS Med 2009;6:221–231.

    CAS  Google Scholar 

  116. Yang F, Mei Y, Langer R, Anderson DG. High throughput optimization of stem cell microenvironments. Comb Chem High Throughput Screen 2009;12:554–561.

    CAS  Google Scholar 

Download references

Acknowledgement

We apologize to many of our colleagues whose deserving work could not be included in this chapter due to constraint of length.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyni Varghese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Sangaj, N., Varghese, S. (2011). Controlling Stem Cells with Biomaterials. In: Burdick, J.A., Mauck, R.L. (eds) Biomaterials for Tissue Engineering Applications. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0385-2_18

Download citation

Publish with us

Policies and ethics