Skip to main content

Mitogen-Activated Protein Kinases in Cerebral Vasospasm After Subarachnoid Hemorrhage: A Review

  • Conference paper
Early Brain Injury or Cerebral Vasospasm

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 110/1))

Abstract

Background: Mitogen-activated protein kinases (MAPKs) have been implicated in the pathogenesis of cerebral vasospasm after subarachnoid hemorrhage. The goal of this review is to bring together recent diverse data concerning the roles of MAPKs in cerebral vasospasm and to consider the future research. Emphasis Type="Italic">Method: A review of publications in the National Library of Medicine and National Institutes of Health database was conducted in August 2009 using specific keyword search terms pertaining to subarachnoid hemorrhage and MAPKs. Findings: There are nine in vitro studies and 17 in vivo studies published. Most of previous studies used MAPK inhibitors or their upstream molecule inhibitors, and showed that MAPK inhibitions prevented vasospasm. The MAPK cascade appears to interact with other signaling molecules, and MAPK may be an important final common pathway for the signaling transduction during cerebral vasospasm. However, the mechanism by which MAPK causes sustained vascular smooth muscle contraction remains unclear. In addition, the role of endogenous MAPK inhibitors, MAPK phosphatases, has not been investigated in cerebral vasospasm. Conclusions: The experimental data support the causative role of MAPK in cerebral vasospasm and warrant further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang Y, Moreland S, Moreland RS. Regulation of vascular smooth muscle contraction: myosin light chain phosphorylation dependent and independent pathways. Can J Physiol Pharmacol. 1994;72:1386–91.

    Article  PubMed  CAS  Google Scholar 

  2. Menice CB, Hulvershorn J, Adam LP, Wang CA, Morgan KG. Calponin and mitogen-activated protein kinase signaling in differentiated vascular smooth muscle. J Biol Chem. 1997;272:25157–61.

    Article  PubMed  CAS  Google Scholar 

  3. Hedges JC, Oxhorn BC, Carty M, Adam LP, Yamboliev IA, Gerthoffer WT. Phosphorylation of caldesmon by ERK MAP kinase in smooth muscle. Am J Physiol Cell Physiol. 2000;278:C718–26.

    PubMed  CAS  Google Scholar 

  4. Beall A, Epstein A, Woodrum D, Brophy CM. Cyclosporine-induced renal artery smooth muscle contraction is associated with increases in the phosphorylation of specific contractile regulatory proteins. Biochim Biophys Acta. 1999;1449:41–9.

    Article  PubMed  CAS  Google Scholar 

  5. Bitar KN, Kaminski MS, Hailat N, Cease KB, Strahler JR. Hsp27 is a mediator of sustained smooth muscle contraction in response to bombesin. Biochem Biophys Res Commun. 1991;181:1192–200.

    Article  PubMed  CAS  Google Scholar 

  6. Brophy CM, Woodrum D, Dickinson M, Beall A. Thrombin activates MAPKAP2 kinase in vascular smooth muscle. J Vasc Surg. 1998;27:963–969.

    Article  PubMed  CAS  Google Scholar 

  7. Wang P, Bitar KN. Rho A regulates sustained smooth muscle contraction through cytoskeletal reorganization of HSP27. Am J Physiol Gastrointest Liver Physiol. 1998;275:G1454–62.

    CAS  Google Scholar 

  8. Gerthoffer W, Gunst SJ. Invited review: focal adhesion and small heat shock proteins in the regulation of actin remodeling and contractility in smooth muscle. J Appl Physiol. 2001;91:963–72.

    PubMed  CAS  Google Scholar 

  9. McLemore EC, Tessier DJ, Thresher J, Komalavilas P, Brophy CM. Role of the small heat shock proteins in regulating vascular smooth muscle tone. J Am Coll Surg. 2005;201:30–6.

    Article  PubMed  Google Scholar 

  10. Yamboliev IA, Hedges JC, Mutnick JL-M, Adam LP, Gerthoffer WT. Evidence for modulation of smooth muscle force by the p38 MAP kinase/HSP27 pathway. Am J Physiol Heart Circ Physiol. 2000;278:1899–1907.

    Google Scholar 

  11. Laher I, Zhang JH. Protein kinase C and cerebral vasospasm. J Cereb Blood Flow Metab. 2001;21:887–906.

    Article  PubMed  CAS  Google Scholar 

  12. Vollrath B, Cook D, Megyesi J, Findlay JM, Ohkuma H. Novel mechanism by which hemoglobin induces constriction of cerebral arteries. Eur J Pharmacol. 1998;361:311–19

    Article  PubMed  CAS  Google Scholar 

  13. Zubkov AY, Ogihara K, Tumu P, Patlolla A, Lewis AI, Parent AD, Zhang J. Mitogen-activated protein kinase mediation of hemolysate-induced contraction in rabbit basilar artery. J Neurosurg. 1999;90:1091–97.

    Article  PubMed  CAS  Google Scholar 

  14. Zubkov AY, Rollins KS, Parent AD, Zhang J. Mechanism of endothelin-1-induced contraction in rabbit basilar artery. Stroke 2000;31:526–33.

    Article  PubMed  CAS  Google Scholar 

  15. Zubkov AY, Rollins KS, McGehee B, Parent AD, Zhang JH. Relaxant effect of U0126 in hemolysate-, oxyhemoglobin-, and bloody cerebrospinal fluid-induced contraction in rabbit basilar artery. Stroke 2001;32:154–61.

    Article  PubMed  CAS  Google Scholar 

  16. Sasaki T, Kasuya H, Onda H, Sasahara A, Goto S, Hori T, Inoue I. Role of p38 mitogen-activated protein kinase on cerebral vasospasm after subarachnoid hemorrhage. Stroke 2004;35:1466–70.

    Article  PubMed  CAS  Google Scholar 

  17. Maeda Y, Hirano K, Nishimura J, Sasaki T, Kanaide H. Endothelial dysfunction and altered bradykinin response due to oxidative stress induced by serum deprivation in the bovine cerebral artery. Eur J Pharmacol. 2004;491:53–60.

    Article  PubMed  CAS  Google Scholar 

  18. Henriksson M, Xu C-B, Edvinsson L. Importance of ERK1/2 in upregulation of endothelin type B receptors in cerebral arteries. Br J Pharmacol. 2004;142:1155–61.

    Article  PubMed  CAS  Google Scholar 

  19. Jamali R, Edvinsson L. Involvement of protein kinases on the upregulation of endothelin receptors in rat basilar and mesenteric arteries. Exp Biol Med. 2006;231:403–11

    CAS  Google Scholar 

  20. Beg SAS, Hansen-Schwartz JA, Vikman PJ, Xu C-B, Edvinsson LIH. ERK1/2 inhibition attenuates cerebral blood flow reduction and abolishes ETB and 5-HT1B receptor upregulation after subarachnoid hemorrhage in rat. J Cereb Blood Flow Metab. 2006;26:846–56.

    Article  PubMed  CAS  Google Scholar 

  21. Schonwasser DC, Marais RM, Marshall CJ, Parker PJ. Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Mol Cell Biol. 1998;18:790–98.

    PubMed  CAS  Google Scholar 

  22. Uddman E, Moller S, Adner M, Edvinsson L. Cytokines induce increased endothelin ET(B) receptor-mediated contraction. Eur J Pharmacol. 1999;376:223–32.

    Article  PubMed  CAS  Google Scholar 

  23. Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K, Gotoh Y. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 1997;275:90–4.

    Article  PubMed  CAS  Google Scholar 

  24. Fujikawa H, Tani E, Yamaura I, Ozaki I, Miyaji K, Sato M, Takahashi K, Imajoh-Ohmi S. Activation of protein kinases in canine basilar artery in vasospasm. J Cereb Blood Flow Metab. 1999;19:44–52.

    Article  PubMed  CAS  Google Scholar 

  25. Tibbs R, Zubkov A, Aoki K, Meguro T, Badr A, Parent A, Zhang J. Effects of mitogen-activated protein kinase inhibitors on cerebral vasospasm in a double-hemorrhage model in dogs. J Neurosurg. 2000;93:1041–47.

    Article  PubMed  CAS  Google Scholar 

  26. Zubkov AY, Tibbs RE, Aoki K, Zhang JH. Prevention of vasospasm in penetrating arteries with MAPK inhibitors in dog double-hemorrhage model. Surg Neurol. 2000;54:221–28

    Article  PubMed  CAS  Google Scholar 

  27. Yin W, Tibbs R, Aoki K, Badr A, Zhang J. Metabolic alterations in cerebrospinal fluid from double hemorrhage model of dogs. Neurol Res. 2001;23:87–92

    Article  PubMed  CAS  Google Scholar 

  28. Aoki K, Zubkov AY, Tibbs RE, Zhang JH. Role of MAPK in chronic cerebral vasospasm. Life Sci. 2002;70:1901–08.

    Article  PubMed  CAS  Google Scholar 

  29. Satoh M, Parent AD, Zhang JH. Inhibitory effect with antisense mitogen-activated protein kinase oligodeoxynucleotide against cerebral vasospasm in rats. Stroke 2002;33:775–781.

    Article  PubMed  CAS  Google Scholar 

  30. Tsurutani H, Ohkuma H, Suzuki S. Effects of thrombin inhibitor on thrombin-related signal transduction and cerebral vasospasm in the rabbit subarachnoid hemorrhage model. Stroke 2003;34:1497–1500

    Article  PubMed  CAS  Google Scholar 

  31. Yamaguchi M, Zhou C, Nanda A, Zhang JH. Ras protein contributes to cerebral vasospasm in a canine double-hemorrhage model. Stroke 2004;35:1750–55.

    Article  PubMed  CAS  Google Scholar 

  32. Kusaka G, Kimura H, Kusaka I, Perkins E, Nanda A, Zhang JH. Contribution of Src tyrosine kinase to cerebral vasospasm after subarachnoid hemorrhage. J Neurosurg. 2003;99:383–90.

    Article  PubMed  CAS  Google Scholar 

  33. Kusaka G, Ishikawa M, Nanda A, Granger DN, Zhang JH. Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2004;24:916–25.

    Article  PubMed  CAS  Google Scholar 

  34. Yatsushige H, Yamaguchi M, Zhou C, Calvert JW, Zhang JH. Role of c-Jun N-Terminal kinase in cerebral vasospasm after experimental subarachnoid hemorrhage. Stroke 2005;36:1538–43.

    Article  PubMed  CAS  Google Scholar 

  35. Vikman P, Ansar S, Henriksson M, Stenman E, Edvinsson L. Cerebral ischemia induces transcription of inflammatory and extracellular-matrix-related genes in rat cerebral arteries. Exp Brain Res. 2007;183:499–510.

    Article  PubMed  CAS  Google Scholar 

  36. Vikman P, Ansar S, Edvinsson L. Transcriptional regulation of inflammatory and extracellular matrix-regulating genes in cerebral arteries following experimental subarachnoid hemorrhage in rats. J Neurosurg. 2007;107:1015–22.

    Article  PubMed  CAS  Google Scholar 

  37. Ansar S, Edvinsson L. Subtype activation and interaction of protein kinase C and mitogen-activated protein kinase controlling receptor expression in cerebral arteries and microvessels after subarachnoid hemorrhage. Stroke 2008;39:185–90.

    Article  PubMed  CAS  Google Scholar 

  38. Chen D, Chen J-J, Yin Q, Guan J-H, Liu Y-H. Role of ERK1/2 and vascular cell proliferation in cerebral vasospasm after experimental subarachnoid hemorrhage. Acta Neurochir. 2009;151:1127–34. doi:10.1007/s00701-009-0385-3.

    Article  PubMed  Google Scholar 

  39. Zhang JH. Role of MAPK in cerebral vasospasm. Drug News Perspect. 2001;14:261–67.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang JH. Role of protein kinase C in cerebral vasospasm: past and future. Neurol Res. 2000;22:369–78.

    PubMed  Google Scholar 

  41. Berk BC, Corson MA. Angiotensin signal transduction in vascular smooth muscle: role of tyrosine kinase. Circ Res. 1997;80:607–16.

    Article  PubMed  CAS  Google Scholar 

  42. Lander HM, Ogiste JS, Teng KK, Novogrodsky A. p21ras as a common signal target of reactive free radicals and cellular redox stress. J Biol Chem. 1995;270:21195–98.

    Article  PubMed  CAS  Google Scholar 

  43. Yan CM, Luo SF, Wang CC, Chiu CT, Chien CS, Lin CC, Hsiao LD. Tumour necrosis factor-alpha- and interleukin-1beta-stimulated cell proliferation through activation of mitogen-activated protein kinase in canine tracheal smooth muscle cell. Br J Pharmacol. 2000;130:891–99.

    Article  Google Scholar 

  44. Schütze S, Berkovic D, Tomsing O, Unger C, Krönke M. Tumor necrosis factor induces rapid production of 1’2’diacylglycerol by a phosphatidylcholine-specific phospholipase C. J Exp Med. 1991;174:975–88.

    Article  PubMed  Google Scholar 

  45. Zubkov AY, Nanda A, Zhang JH. Signal transduction pathways in cerebral vasospasm. Pathophysiology 2003;9:47–61.

    Article  PubMed  CAS  Google Scholar 

  46. Macomson SD, Brophy CM, Miller AW, Harris VA, Shaver EG. Heat shock protein expression in cerebral vessels after subarachnoid hemorrhage. Neurosurgery 2002;51:204–11.

    Article  PubMed  Google Scholar 

  47. Wang X, Liu Y. Regulation of innate immune response by MAP kinase phosphatase-1. Cell Signal. 200719:1372–82.

    Article  PubMed  CAS  Google Scholar 

  48. Boutros T, Chevet E, Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev. 2008;60:261–310.

    Article  PubMed  CAS  Google Scholar 

  49. Keyse SM. Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev. 2008;27:253–61.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by grants (NS053407) from the National Institutes of Health to J.H.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this paper

Cite this paper

Suzuki, H., Hasegawa, Y., Kanamaru, K., Zhang, J.H. (2011). Mitogen-Activated Protein Kinases in Cerebral Vasospasm After Subarachnoid Hemorrhage: A Review. In: Feng, H., Mao, Y., Zhang, J.H. (eds) Early Brain Injury or Cerebral Vasospasm. Acta Neurochirurgica Supplements, vol 110/1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0353-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0353-1_23

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0352-4

  • Online ISBN: 978-3-7091-0353-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics