Pathophysiology of burn injury

Abstract

Burn injury represents a significant problem worldwide. More than 1 million burn injuries occur annually in the United States. Although most of these burn injuries are minor, approximately 40,000 to 60,000 burn patients require admission to a hospital or major burn center for appropriate treatment every year [1]. The devastating consequences of burns have been recognized by the medical community and significant amounts of resources and research have been dedicated, successfully improving these dismal statistics: Recent reports revealed a 50% decline in burn-related deaths and hospital admissions in the USA over the last 20 years; mainly due to effective prevention strategies, decreasing the number and severity of burns [2, 3].

Keywords

Xanthine Oxidase Lean Body Mass Hemorrhagic Shock Thermal Injury Total Body Surface Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Nguyen TT, Gilpin DA, Meyer NA et al (1996) Current treatment of severely burned patients. Ann Surg 223(1): 14–25PubMedCrossRefGoogle Scholar
  2. [2]
    Brigham PA, McLoughlin E (1996) Burn incidence and medical care use in the United States: estimates, trends, and data sources. J Burn Care Rehabil 17(2): 95–107PubMedCrossRefGoogle Scholar
  3. [3]
    Wolf S (2007) Critical care in the severely burned: organ support and management of complications. In: Herndon DN (ed) Total burn care, 3rd edn. Saunders Elsevier, LondonGoogle Scholar
  4. [4]
    Vo LT, Papworth GD, Delaney PM et al (1998) A study of vascular response to thermal injury on hairless mice by fibre optic confocal imaging, laser doppler flowmetry and conventional histology. Burns 24(4): 319–324PubMedCrossRefGoogle Scholar
  5. [5]
    Heggers JP, Loy GL, Robson MC et al (1980) Histological demonstration of prostaglandins and thromboxanes in burned tissue. J Surg Res 28(2): 110–117PubMedCrossRefGoogle Scholar
  6. [6]
    Herndon DN, Abston S, Stein MD (1984) Increased thromboxane B2 levels in the plasma of burned and septic burned patients. Surg Gynecol Obstet 159(3): 210–213PubMedGoogle Scholar
  7. [7]
    Morykwas MJ, David LR, Schneider AM et al (1999) Use of subatmospheric pressure to prevent progression of partial-thickness burns in a swine model. J Burn Care Rehabil 20(1 Pt 1): 15–21PubMedCrossRefGoogle Scholar
  8. [8]
    Nwariaku FE, Sikes PJ, Lightfoot E et al (1996) Effect of a bradykinin antagonist on the local inflammatory response following thermal injury. Burns 22(4): 324–327PubMedCrossRefGoogle Scholar
  9. [9]
    Chappell VL, LaGrone L, Mileski WJ (1999) Inhibition of leukocyte-mediated tissue destruction by synthetic fibronectin peptide (Trp-9-Tyr). J Burn Care Rehabil 20(6): 505–510PubMedCrossRefGoogle Scholar
  10. [10]
    Holland AJ, Martin HC, Cass DT (2002) Laser Doppler imaging prediction of burn wound outcome in children. Burns 28(1): 11–17PubMedCrossRefGoogle Scholar
  11. [11]
    Cockshott WP (1956) The history of the treatment of burns. Surg Cynecol Obstet 102: 116–124Google Scholar
  12. [12]
    Haynes BW (1987) The history of burn care. In: Boswick JAJ (ed) The art and science of burn care. Aspen Publ, Rockville, MD, pp 3–9Google Scholar
  13. [13]
    Underhill FP, Carrington GL, Kapsinov R et al (1923) Blood concentration changes in extensive superficial burns, and their significance for systemic treatment. Arch Intern Med 32: 31–39CrossRefGoogle Scholar
  14. [14]
    Cope O, Moore FD (1947) The redistribution of body water and fluid therapy of the burned patient. Ann Surg 126: 1010–1045CrossRefGoogle Scholar
  15. [15]
    Youn YK, LaLonde C, Demling R (1992) The role of mediators in the response to thermal injury. World J Surg 16(1): 30–36PubMedCrossRefGoogle Scholar
  16. [16]
    Aulick LH, Wilmore DW, Mason AD et al (1977) Influence of the burn wound on peripheral circulation in thermally injured patients. Am J Physiol 233:H520–526Google Scholar
  17. [17]
    Settle JAD (1982) Fluid therapy in burns. J Roy Soc Med 1(75): 7–11Google Scholar
  18. [18]
    Demling RH (1987) Fluid replacement in burned patients. Surg Clin North Am 67: 15–30PubMedGoogle Scholar
  19. [19]
    Demling RH, Will JA, Belzer FO (1978) Effect of major thermal injury on the pulmonary microcirculation. Surgery 83(6): 746–751PubMedGoogle Scholar
  20. [20]
    Baxter CR (1974) Fluid volume and electrolyte changes of the early postburn period. Clin Plast Surg 1(4): 693–709PubMedGoogle Scholar
  21. [21]
    Baxter CR, Cook WA, Shires GT (1966) Serum myocardial depressant factor of burn shock. Surg Forum 17: 1–3PubMedGoogle Scholar
  22. [22]
    Hilton JG, Marullo DS (1986) Effects of thermal trauma on cardiac force of contraction. Burns Incl Therm Inj 12: 167–171PubMedCrossRefGoogle Scholar
  23. [23]
    Clark WR (1990) Death due to thermal trauma. In: Dolecek R, Brizio-Molteni L, Molteni A, Traber D (eds) Endocrinology of thermal trauma. Lea & Febiger, Philadelphia, PA, pp 6–27Google Scholar
  24. [24]
    Lund T, Reed RK (1986) Acute hemodynamic effects of thermal skin injury in the rat. Circ Shock 20: 105–114PubMedGoogle Scholar
  25. [25]
    Arturson G (1961) Pathophysiological aspects of the burn syndrome. Acta Chir Scand 274[Suppl 1]: 12–135Google Scholar
  26. [26]
    Leape LL (1972) Kinetics of burn edema formation in primates. Ann Surg 176: 223–226PubMedCrossRefGoogle Scholar
  27. [27]
    Cioffi WG, Jr, Vaughan GM, Heironimus JD et al (1991) Dissociation of blood volume and flow in regulation of salt and water balance in burn patients. Ann Surg 214(3): 213–218; discussion 218-220PubMedCrossRefGoogle Scholar
  28. [28]
    Demling RH, Mazess RB, Witt RM et al (1978) The study of burn wound edema using dichromatic absorptiometry. J Trauma 18: 124–128PubMedCrossRefGoogle Scholar
  29. [29]
    Lund T, Wiig H, Reed RK (1988) Acute postburn edema: Role of strongly negative interstitial fluid pressure. Am J Physiol 255:H1069PubMedGoogle Scholar
  30. [30]
    Onarheim H, Lund T, Reed R (1989) Thermal skin injury: II. Effects on edema formation and albumin extravasation of fluid resuscitation with lactated Ringer’s, plasma, and hypertonic saline (2,400 mosmol/l) in the rat. Circ Shock 27(1): 25–37PubMedGoogle Scholar
  31. [31]
    Arturson G, Jakobsson OR (1985) Oedema measurements in a standard burn model. Burns 1: 1–7CrossRefGoogle Scholar
  32. [32]
    Leape LL (1968) Early burn wound changes. J Pediatr Surg 3: 292–299PubMedCrossRefGoogle Scholar
  33. [33]
    Leape LL (1970) Initial changes in burns: tissue changes in burned and unburned skin of rhesus monkeys. J Trauma 10: 488–492PubMedCrossRefGoogle Scholar
  34. [34]
    Shires GT, Cunningham Jr JN, Baker CRF et al (1972) Alterations in cellular membrane dysfunction during hemorrhagic shock in primates. Ann Surg 176(3): 288–295PubMedCrossRefGoogle Scholar
  35. [35]
    Nakayama S, Kramer GC, Carlsen RC et al (1984) Amiloride blocks membrane potential depolarization in rat skeletal muscle during hemorrhagic shock (abstract). Circ Shock 13: 106–107Google Scholar
  36. [36]
    Arango A, Illner H, Shires GT (1976) Roles of ischemia in the induction of changes in cell membrane during hemorrhagic shock. J Surg Res 20(5): 473–476PubMedCrossRefGoogle Scholar
  37. [37]
    Holliday RL, Illner HP, Shires GT (1981) Liver cell membrane alterations during hemorrhagic shock in the rat. J Surg Res 31: 506–515PubMedCrossRefGoogle Scholar
  38. [38]
    Mazzoni MC, Borgstrom P, Intaglietta M et al (1989) Lumenal narrowing and endothelial cell swelling in skeletal muscle capillaries during hemorrhagic shock. Circ Shock 29(1): 27–39PubMedGoogle Scholar
  39. [39]
    Garcia NM, Horton JW (1994) L-arginine improves resting cardiac transmembrane potential after burn injury. Shock 1(5): 354–358PubMedCrossRefGoogle Scholar
  40. [40]
    Button B, Baker RD, Vertrees RA et al (2001) Quantitative assessment of a circulating depolarizing factor in shock. Shock 15(3): 239–244PubMedCrossRefGoogle Scholar
  41. [41]
    Evans JA, Darlington DN, Gann DS (1991) A circulating factor(s) mediates cell depolarization in hemorrhagic shock. Ann Surg 213(6): 549–557PubMedCrossRefGoogle Scholar
  42. [42]
    Trunkey DD, Illner H, Arango A et al (1974) Changes in cell membrane function following shock and crossperfusion. Surg Forum 25: 1–3PubMedGoogle Scholar
  43. [43]
    Brown JM, Grosso MA, Moore EE (1990) Hypertonic saline and dextran: Impact on cardiac function in the isolated rat heart. J Trauma 30: 646–651PubMedGoogle Scholar
  44. [44]
    Evans JA, Massoglia G, Sutherland B et al (1993) Molecular properties of hemorrhagic shock factor (abstract). Biophys J 64:A384CrossRefGoogle Scholar
  45. [45]
    Anggard E, Jonsson CE (1971) Efflux of prostaglandins in lymph from scalded tissue. Acta Physiol Scand 81(4): 440–447PubMedCrossRefGoogle Scholar
  46. [46]
    Holliman CJ, Meuleman TR, Larsen KR et al (1983) The effect of ketanserin, a specific serotonin antagonist, on burn shock hemodynamic parameters in a porcine burn model. J Trauma 23(10): 867–871PubMedCrossRefGoogle Scholar
  47. [47]
    Majno G, Palade GE (1961) Studies on inflammation. 1. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. J Biophys Biochem Cytol 11: 571–605PubMedCrossRefGoogle Scholar
  48. [48]
    Majno G, Shea SM, Leventhal M (1969) Endothelial contraction induced by histamine-type mediators: an electron microscopic study. J Cell Biol 42(3): 647–672PubMedCrossRefGoogle Scholar
  49. [49]
    Wilmore DW, Long JM, Mason AD, Jr et al (1974) Catecholamines: mediator of the hypermetabolic response to thermal injury. Ann Surg 180(4): 653-669Google Scholar
  50. [50]
    Goodman-Gilman A, Rall TW, Nies AS et al (1990) The pharmacological basis of therapeutics. Pergamon Press, New YorkGoogle Scholar
  51. [51]
    Friedl HS, Till GO, Tentz O et al (1989) Roles of histamine, complement and xanthine oxidase in thermal injury of skin. Am J Pathol 135(1): 203–217PubMedGoogle Scholar
  52. [52]
    Boykin Jr JV, Manson NH (1987) Mechanisms of cimetidine protection following thermal injury. Am J Med 83(6A):76–81PubMedCrossRefGoogle Scholar
  53. [53]
    Till GO, Guilds LS, Mahrougui M et al (1989) Role of xanthine oxidase in thermal injury of skin. Am J Pathol 135(1): 195–202PubMedGoogle Scholar
  54. [54]
    Tanaka H, Wada T, Simazaki S et al (1991) Effects of cimetidine on fluid requirement during resuscitation of third-degree burns. J Burn Care Rehabil 12(5): 425–429PubMedCrossRefGoogle Scholar
  55. [55]
    Harms B, Bodai B, Demling R (1981) Prostaglandin release and altered microvascular integrity after burn injury. J Surg Res 31: 27–28CrossRefGoogle Scholar
  56. [56]
    Anggard E, Jonsson CE (1971) Efflux of prostaglandins in lymph from scalded tissue. Acta Physiol Scand 81: 440–443PubMedCrossRefGoogle Scholar
  57. [57]
    Arturson G (1981) Anti-inflammatory drugs and burn edema formation. In: May R, Dogo G (eds) Care of the burn wound. Karger, Basel, pp 21–24Google Scholar
  58. [58]
    Arturson G, Hamberg M, Jonsson CE (1973) Prostaglandins in human burn blister fluid. Acta Physiol Scand 87: 27–36CrossRefGoogle Scholar
  59. [59]
    LaLonde C, Knox J, Daryani R (1991) Topical flurbiprofen decreases burn wound-induced hypermetabolism and systemic lipid peroxidation. Surgery 109: 645–651PubMedGoogle Scholar
  60. [60]
    Huang YS, Li A, Yang ZC (1990) Roles of thromboxane and its inhibitor anisodamine in burn shock. Burns 4: 249–253CrossRefGoogle Scholar
  61. [61]
    Heggers JP, Loy GL, Robson MC et al (1980) Histological demonstration of prostaglandins and thromboxanes in burned tissue. J Surg Res 28: 11–15CrossRefGoogle Scholar
  62. [62]
    Heggers JP, Robson MC, Zachary LS (1985) Thromboxane inhibitors for the prevention of progressive dermal ischemia due to thermal injury. J Burn Care Rehabil 6: 46–48Google Scholar
  63. [63]
    Demling RH, LaLonde C (1987) Topical ibuprofen decreases early postburn edema. Surgery 5: 857–861Google Scholar
  64. [64]
    LaLonde C, Demling RH (1989) Inhibition of thromboxane synthetase accentuates hemodynamic instability and burn edema in the anesthetized sheep model. Surgery 5: 638–644Google Scholar
  65. [65]
    Jacobsen S, Waaler BG (1966) The effect of scalding on the content of kininogen and kininase in limb lymph. Br J Pharmacol 27: 222–229Google Scholar
  66. [66]
    Hafner JA, Fritz H (1990) Balance antiinflammation: the combined application of a PAF inhibitor and a cyclooxygenase inhibitor blocks the inflammatory takeoff after burns. Int J Tissue React 12: 203PubMedGoogle Scholar
  67. [67]
    Carvajal H, Linares H, Brouhard B (1975) Effect of antihistamine, antiserotonin, and ganglionic blocking agents upon increased capillary permeability following burn edema. J Trauma 15: 969–975PubMedCrossRefGoogle Scholar
  68. [68]
    Ferrara JJ, Westervelt CL, Kukuy EL et al (1996) Burn edema reduction by methysergide is not due to control of regional vasodilation. J Surg Res 61(1): 11–16PubMedCrossRefGoogle Scholar
  69. [69]
    Zhang XJ, Irtun O, Zheng Y et al (2000) Methysergide reduces nonnutritive blood flow in normal and scalded skin. Am J Physiol 278(3):E452–461Google Scholar
  70. [70]
    Wilmore DW, Long JM, Mason AD et al (1974) Catecholamines: mediator of the hypermetabolic response to thermal injury. Ann Surg 80: 653–659CrossRefGoogle Scholar
  71. [71]
    Hilton JG (1984) Effects of sodium nitroprusside on thermal trauma depressed cardiac output in the anesthesized dog. Burns Incl Therm Inj 10: 318–322PubMedCrossRefGoogle Scholar
  72. [72]
    McCord J, Fridovieh I (1978) The biology and pathology of oxygen radicals. Ann lntern Med 89: 122–127Google Scholar
  73. [73]
    Demling RH, LaLonde C (1990) Early postburn lipid peroxidation: effect of ibuprofen and allopurinol. Surgery 107: 85–93PubMedGoogle Scholar
  74. [74]
    Demling R, Lalonde C, Knox J et al (1991) Fluid resuscitation with deferoxamine prevents systemic burn-induced oxidant injury. J Trauma 31(4): 538–543PubMedCrossRefGoogle Scholar
  75. [75]
    Rawlingson A, Greenacre SA, Brain SD (2000) Generation of peroxynitrite in localised, moderate temperature burns. Burns 26(3): 223–227PubMedCrossRefGoogle Scholar
  76. [76]
    Lindblom L, Cassuto J, Yregard L et al (2000) Importance of nitric oxide in the regulation of burn oedema, proteinuria and urine output. Burns 26(1): 13–17PubMedCrossRefGoogle Scholar
  77. [77]
    Lindblom L, Cassuto J, Yregard L et al (2000) Role of nitric oxide in the control of burn perfusion. Burns 26(1): 19–23PubMedCrossRefGoogle Scholar
  78. [78]
    Slater TF, Benedetto C (1979) Free radical reactions in relation to lipid peroxidation, inflamnation and prostaglandin metabolism. In: Berti F, Veto G (eds) The prostaglandin system. Plenum Press, New York, pp 109–126Google Scholar
  79. [79]
    McCord JM (1979) Oxygen-derived free radicals in post ischemic tissue injury. N Engl J Med 312: 159–163Google Scholar
  80. [80]
    Tanaka H, Matsuda H, Shimazaki S et al (1997) Reduced resuscitation fluid volume for second-degree burns with delayed initiation of ascorbic acid therapy. Arch Surg 132(2): 158–161PubMedCrossRefGoogle Scholar
  81. [81]
    Tanaka H, Lund T, Wiig H et al (1999) High dose vitamin C counteracts the negative interstitial fluid hydrostatic pressure and early edema generation in thermally injured rats. Burns 25(7): 569–574PubMedCrossRefGoogle Scholar
  82. [82]
    Dubick MA, Williams CA, Elgjo GI et al (2005) High dose vitamin C infusion reduces fluid requirements in the resuscitation of burn injured in sheep. Shock 24(2): 139–144PubMedCrossRefGoogle Scholar
  83. [83]
    Tanaka H, Matsuda T, Yukioka T et al (1996) High dose vitamin C reduces resuscitation fluid volume in severely burned patients. Proceedings of the American Burn Association 28: 77Google Scholar
  84. [84]
    Fischer SF, Bone HG, Powell WC et al (1997) Pyridoxalated hemoglobin polyoxyethylene conjugate does not restore hypoxic pulmonary vasoconstriction in ovine sepsis. Crit Care 25(9): 1151–1159Google Scholar
  85. [85]
    Ono I, Gunji H, Hasegawa T et al (1993) Effects of a platelet activating factor antagonist on edema formation following burns. Burns 3: 202–207CrossRefGoogle Scholar
  86. [86]
    Fink MP (1991) Gastrointestinal mucosal injury in experimental models of shock, trauma, and sepsis. Crit Care Med 19(5): 627–641PubMedCrossRefGoogle Scholar
  87. [87]
    Cui X, Sheng Z, Guo Z (1998) Mechanisms of early gastro-intestinal ischemia after burn: hemodynamic and hemorrheologic features [Chinese]. Chin J Plast Surg Burns 14(4): 262–265Google Scholar
  88. [88]
    Crum RL, Dominie W, Hansbrough JF (1990) Cardiovaseular and neuroburnoral responses following burn injury. Arch Surg 125: 1065–1070PubMedCrossRefGoogle Scholar
  89. [89]
    Sun K, Gong A, Wang CH et al (1990) Effect of peripheral injection of arginine vasopressin and its receptor antagonist on burn shock in the rat. Neuropeptides 1: 17–20CrossRefGoogle Scholar
  90. [90]
    Kiang JG, Wei-E T (1987) Corticotropin-releasing factor inhibits thermal injury. J Pharmacol Exp Ther 2: 517–520Google Scholar
  91. [91]
    Michie DD, RS G, Mason Jr AD (1963) Effects of hydralazine and high molecular weight dextran upon the circulatory responses to severe thermal burns. Circ Res 13: 46–48CrossRefGoogle Scholar
  92. [92]
    Hart DW, Wolf SE, Mlcak R et al (2000) Persistence of muscle catabolism after severe burn. Surgery 128(2): 312–319PubMedCrossRefGoogle Scholar
  93. [93]
    Mlcak RP, Jeschke MG, Barrow RE et al (2006) The influence of age and gender on resting energy expenditure in severely burned children. Ann Surg 244(1): 121–130PubMedCrossRefGoogle Scholar
  94. [94]
    Przkora R, Barrow RE, Jeschke MG et al (2006) Body composition changes with time in pediatric burn patients. J Trauma 60(5): 968–971PubMedCrossRefGoogle Scholar
  95. [95]
    Dolecek R (1989) Endocrine changes after burn trauma-a review. Keio J Med 38(3): 262–276PubMedCrossRefGoogle Scholar
  96. [96]
    Jeffries MK, Vance ML (1992) Growth hormone and cortisol secretion in patients with burn injury. J Burn Care Rehabil 13(4): 391–395PubMedCrossRefGoogle Scholar
  97. [97]
    Klein GL, Bi LX, Sherrard DJ et al (2004) Evidence supporting a role of glucocorticoids in short-term bone loss in burned children. Osteoporos Int 15(6): 468–474Google Scholar
  98. [98]
    Goodall M, Stone C, Haynes BW, Jr (1957) Urinary output of adrenaline and noradrenaline in severe thermal burns. Ann Surg 145(4): 479–487PubMedCrossRefGoogle Scholar
  99. [99]
    Coombes EJ, Batstone GF (1982) Urine cortisol levels after burn injury. Burns Incl Therm Inj 8(5): 333–337PubMedCrossRefGoogle Scholar
  100. [100]
    Norbury WB, Herndon DN (2007) Modulation of the hypermetabolic response after burn injury. In: Herndon DN (ed) Total burn care, 3rd edn. Saunders & Elsevier, New York, pp 420–433CrossRefGoogle Scholar
  101. [101]
    Sheridan RL (2001) A great constitutional disturbance. N Engl J Med 345(17): 1271–1272PubMedCrossRefGoogle Scholar
  102. [102]
    Pereira C, Murphy K, Jeschke M et al (2005) Post burn muscle wasting and the effects of treatments. Int J Biochem Cell Biol 37(10): 1948–1961PubMedCrossRefGoogle Scholar
  103. [103]
    Wolfe RR (1981) Review: acute versus chronic response to burn injury. Circ Shock 8(1): 105–115PubMedGoogle Scholar
  104. [104]
    Cuthbertson DP, Angeles Valero Zanuy MA, Leon Sanz ML (2001) Post-shock metabolic response. 1942. Nutr Hosp 16(5): 175–182Google Scholar
  105. [105]
    Galster AD, Bier DM, Cryer PE et al (1984) Plasma palmitate turnover in subjects with thermal injury. J Trauma 24(11): 938–945PubMedCrossRefGoogle Scholar
  106. [106]
    Cree MG, Aarsland A, Herndon DN et al (2007)Role of fat metabolism in burn trauma-induced skeletal muscle insulin resistance. Crit Care Med 35[9 Suppl]: S476–483PubMedCrossRefGoogle Scholar
  107. [107]
    Childs C, Heath DF, Little RA et al (1990) Glucose metabolism in children during the first day after burn injury. Arch Emerg Med 7(3): 135–147PubMedGoogle Scholar
  108. [108]
    Jeschke MG, Mlcak RP, Finnerty CC et al (2007) Burn size determines the inflammatory and hypermetabolic response. Crit Care 11(4):R90PubMedCrossRefGoogle Scholar
  109. [109]
    Gauglitz GG, Herndon DN, Kulp GA et al (2009) Abnormal insulin sensitivity persists up to three years in pediatric patients post-burn. J Clin Endocrinol Metab 94(5): 1656–1664PubMedCrossRefGoogle Scholar
  110. [110]
    Herndon DN, Tompkins RG (2004) Support of the metabolic response to burn injury. Lancet 363(9424): 1895–1902PubMedCrossRefGoogle Scholar
  111. [111]
    Jeschke MG, Chinkes DL, Finnerty CC et al (2008) Pathophysiologic response to severe burn injury. Ann Surg 248(3): 387–401PubMedGoogle Scholar
  112. [112]
    Wilmore DW, Aulick LH, Pruitt BA, Jr (1978) Metabolism during the hypermetabolic phase of thermal injury. Adv Surg 12: 193–225PubMedGoogle Scholar
  113. [113]
    Cuthbertson DP, Angeles Valero Zanuy MA, Leon Sanz ML (2001) Post-shock metabolic response. 1942. Nutr Hosp 16(5): 176–182; discussion 175-176PubMedGoogle Scholar
  114. [114]
    Herndon DN, Hart DW, Wolf SE et al (2001) Reversal of catabolism by beta-blockade after severe burns. N Engl J Med 345(17): 1223–1229PubMedCrossRefGoogle Scholar
  115. [115]
    Baron PW, Barrow RE, Pierre EJ et al (1997) Prolonged use of propranolol safely decreases cardiac work in burned children. J Burn Care Rehabil 18(3): 223–227PubMedCrossRefGoogle Scholar
  116. [116]
    Minifee PK, Barrow RE, Abston S et al (1989) Improved myocardial oxygen utilization following propranolol infusion in adolescents with postburn hypermetabolism. J Pediatr Surg 24(8): 806–810; discussion 810-801PubMedCrossRefGoogle Scholar
  117. [117]
    Bessey PQ, Jiang ZM, Johnson DJ et al (1989) Posttraumatic skeletal muscle proteolysis: the role of the hormonal environment. World J Surg 13(4): 465–470; discussion 471PubMedCrossRefGoogle Scholar
  118. [118]
    Hart DW, Wolf SE, Chinkes DL et al (2000) Determinants of skeletal muscle catabolism after severe burn. Ann Surg 232(4): 455–465PubMedCrossRefGoogle Scholar
  119. [119]
    Chang DW, DeSanti L, Demling RH (1998) Anticatabolic and anabolic strategies in critical illness: a review of current treatment modalities. Shock 10(3): 155–160PubMedCrossRefGoogle Scholar
  120. [120]
    Newsome TW, Mason AD, Jr, Pruitt BA, Jr (1973) Weight loss following thermal injury. Ann Surg 178(2): 215–217PubMedCrossRefGoogle Scholar
  121. [121]
    Jahoor F, Desai M, Herndon DN et al (1988) Dynamics of the protein metabolic response to burn injury. Metabolism 37(4): 330–337PubMedCrossRefGoogle Scholar
  122. [122]
    Kinney JM, Long CL, Gump FE et al (1968) Tissue composition of weight loss in surgical patients. I. Elective operation. Ann Surg 168(3): 459–474PubMedCrossRefGoogle Scholar
  123. [123]
    Rutan RL, Herndon DN (1990) Growth delay in postburn pediatric patients. Arch Surg 125(3): 392–395PubMedCrossRefGoogle Scholar
  124. [124]
    Wolfe RR, Goodenough RD, Burke JF et al (1983) Response of protein and urea kinetics in burn patients to different levels of protein intake. Ann Surg 197(2): 163–171PubMedCrossRefGoogle Scholar
  125. [125]
    Wolfe RR, Herndon DN, Jahoor F et al (1987) Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med 317(7): 403–408PubMedCrossRefGoogle Scholar
  126. [126]
    Yu YM, Tompkins RG, Ryan CM et al (1999) The metabolic basis of the increase of the increase in energy expenditure in severely burned patients. JPEN J Parenter Enteral Nutr 23(3): 160–168PubMedCrossRefGoogle Scholar
  127. [127]
    Gauglitz GG, Halder S, Boehning DF et al (2010) Postburn hepatic insulin resistance is associated with Er stress. Shock 33(3): 299–305PubMedCrossRefGoogle Scholar
  128. [128]
    Gauglitz GG, Finnerty CC, Herndon DN et al (2008) Are serum cytokines early predictors for the outcome of burn patients with inhalation injuries who do not survive? Crit Care 12(3):R81PubMedCrossRefGoogle Scholar
  129. [129]
    Gauglitz GG, Toliver-Kinsky TE, Williams FN et al (2010) Insulin increases resistance to burn wound infection-associated sepsis. Crit Care Med 38(1): 202–208Google Scholar
  130. [130]
    Wilmore DW, Mason AD, Jr, Pruitt BA, Jr (1976) Insulin response to glucose in hypermetabolic burn patients. Ann Surg 183(3): 314–320PubMedCrossRefGoogle Scholar
  131. [131]
    Gearhart MM, Parbhoo SK (2006) Hyperglycemia in the critically ill patient. AACN Clin Issues 17(1): 50–55PubMedCrossRefGoogle Scholar
  132. [132]
    Robinson LE, van Soeren MH (2004) Insulin resistance and hyperglycemia in critical illness: role of insulin in glycemic control. AACN Clin Issues 15(1): 45–62PubMedCrossRefGoogle Scholar
  133. [133]
    Khani S, Tayek JA (2001) Cortisol increases gluconeogenesis in humans: its role in the metabolic syndrome. Clin Sci (Lond) 101(6): 739–747CrossRefGoogle Scholar
  134. [134]
    Gore DC, Jahoor F, Wolfe RR et al (1993) Acute response of human muscle protein to catabolic hormones. Ann Surg 218(5): 679–684PubMedCrossRefGoogle Scholar
  135. [135]
    Carlson GL (2001) Insulin resistance and glucose-induced thermogenesis in critical illness. Proc Nutr Soc 60(3): 381–388PubMedCrossRefGoogle Scholar
  136. [136]
    Wolfe RR, Durkot MJ, Allsop JR et al (1979) Glucose metabolism in severely burned patients. Metabolism 28(10): 1031–1039PubMedCrossRefGoogle Scholar
  137. [137]
    Cree MG, Zwetsloot JJ, Herndon DN et al (2007) Insulin sensitivity and mitochondrial function are improved in children with burn injury during a randomized controlled trial of fenofibrate. Ann Surg 245(2): 214–221PubMedCrossRefGoogle Scholar
  138. [138]
    Hunt DG, Ivy JL (2002) Epinephrine inhibits insulinstimulated muscle glucose transport. J Appl Physiol 93(5): 1638–1643PubMedGoogle Scholar
  139. [139]
    Gustavson SM, Chu CA, Nishizawa M et al (2003) Interaction of glucagon and epinephrine in the control of hepatic glucose production in the conscious dog. Am J Physiol Endocrinol Metab 284(4):E695–707PubMedGoogle Scholar
  140. [140]
    Mastorakos G, Chrousos GP, Weber JS (1993) Recombinant interleukin-6 activates the hypothalamic-pituitary-adrenal axis in humans. J Clin Endocrinol Metab 77(6): 1690–1694PubMedCrossRefGoogle Scholar
  141. [141]
    Lang CH, Dobrescu C, Bagby GJ (1992) Tumor necrosis factor impairs insulin action on peripheral glucose disposal and hepatic glucose output. Endocrinology 130(1): 43–52PubMedCrossRefGoogle Scholar
  142. [142]
    Akita S, Akino K, Ren SG et al (2006) Elevated circulating leukemia inhibitory factor in patients with extensive burns. J Burn Care Res 27(2): 221–225PubMedCrossRefGoogle Scholar
  143. [143]
    Fan J, Li YH, Wojnar MM et al (1996) Endotoxin-induced alterations in insulin-stimulated phosphorylation of insulin receptor, IRS-1, and MAP kinase in skeletal muscle. Shock 6(3): 164–170PubMedCrossRefGoogle Scholar
  144. [144]
    del Aguila LF, Claffey KP, Kirwan JP (1999) TNF-alpha impairs insulin signaling and insulin stimulation of glucose uptake in C2C12 muscle cells. Am J Physiol 276(5 Pt 1): E849–855PubMedGoogle Scholar
  145. [145]
    Sell H, Dietze-Schroeder D, Kaiser U et al (2006) Monocyte chemotactic protein-1 is a potential player in the negative cross-talk between adipose tissue and skeletal muscle. Endocrinology 147(5): 2458–2467PubMedCrossRefGoogle Scholar
  146. [146]
    Baracos V, Rodemann HP, Dinarello CA et al (1983) Stimulation of muscle protein degradation and prostaglandin E2 release by leukocytic pyrogen (interleukin-1). A mechanism for the increased degradation of muscle proteins during fever. N Engl J Med 308(10): 553–558PubMedCrossRefGoogle Scholar
  147. [147]
    Saffle JR, Graves C (2007) Nutritional support of the burned patient. In: Herndon DN (ed) Total burn care, 3rd edn. Saunders Elsevier, London, pp 398–419CrossRefGoogle Scholar
  148. [148]
    DeFronzo RA, Jacot E, Jequier E et al (1981) The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30(12): 1000–1007PubMedGoogle Scholar
  149. [149]
    Flakoll PJ, Hill JO, Abumrad NN (1993) Acute hyperglycemia enhances proteolysis in normal man. Am J Physiol 265(5 Pt 1): E715–721PubMedGoogle Scholar
  150. [150]
    McClave SA, Snider HL (1992) Use of indirect calorimetry in clinical nutrition. Nutr Clin Pract 7(5): 207–221PubMedCrossRefGoogle Scholar
  151. [151]
    Arora NS, Rochester DF (1982) Respiratory muscle strength and maximal voluntary ventilation in undernourished patients. Am Rev Respir Dis 126(1): 5–8PubMedGoogle Scholar
  152. [152]
    Greenhalgh DG, Saffle JR, Holmes JHt et al (2007) American Burn Association consensus conference to define sepsis and infection in burns. J Burn Care Res 28(6): 776–790PubMedCrossRefGoogle Scholar
  153. [153]
    Williams FN, Herndon DN, Hawkins HK et al (2009) The leading causes of death after burn injury in a single pediatric burn center. Crit Care 13(6): R183PubMedCrossRefGoogle Scholar
  154. [154]
    Murray CK, Loo FL, Hospenthal DR et al (2008) Incidence of systemic fungal infection and related mortality following severe burns. Burns 34(8): 1108–1112PubMedCrossRefGoogle Scholar
  155. [155]
    Pruitt BA, Jr, McManus AT, Kim SH et al (1998) Burn wound infections: current status. World J Surg 22(2): 135–145PubMedCrossRefGoogle Scholar
  156. [156]
    Martyn JAJ, Wilson RS, Burke JF (1986) Right ventricular function and pulmonary hemodynamics during dopamine infusion in burned patients. Chest 89: 357–360PubMedCrossRefGoogle Scholar
  157. [157]
    Adams HR, Baxter CR, Izenberg SD (1984) Decreased contractility and compliance of the left ventricle as complications of thermal trauma. Am Heart J 108(6): 1477–1487PubMedCrossRefGoogle Scholar
  158. [158]
    Merriman Jr TW, Jackson R (1962) Myocardial function following thermal injury. Circ Res 11: 66–69Google Scholar
  159. [159]
    Horton JW, White J, Baxter CR (1987) Aging alters myocardial response during resuscitation in burn shock. Surg Forum 38: 249–251Google Scholar
  160. [160]
    Baxter CR, Shires GT (1968) Physiological response to crystalloid resuscitation of severe burns. Ann NY Acad Sci 150: 874–894PubMedCrossRefGoogle Scholar
  161. [161]
    Sugi K, Newald J, Traber LD (1988) Smoke inhalation injury causes myocardial depression in sheep. Anesthesiology 69: A 111CrossRefGoogle Scholar
  162. [162]
    Sugi K, Theissen JL, Traber LD et al (1990) Impact of carbon monoxide on cardiopulmonary dysfunction after smoke inhalation injury. Circ Res 66: 69–75PubMedCrossRefGoogle Scholar
  163. [163]
    Horton JW, Baxter CR, White J (1989) Differences in cardiac responses to resuscitation from burn shock. Surgery, Gynecology & Obstetrics 168(3): 201–213Google Scholar
  164. [164]
    Horton JW, White DJ, Baxter CR (1990) Hypertonic saline dextran resuscitation of thermal injury. Ann Surg 211(3): 301–311PubMedGoogle Scholar
  165. [165]
    Horton JW, Shite J, Hunt JL (1995) Delayed hypertonic saline dextran administration after burn injury. J Trauma 38(2): 281–286PubMedCrossRefGoogle Scholar
  166. [166]
    Horton JW, White J, Baxter CR (1988) The role of oxygen derived free radicles in burn-induced myocardial contractile depression. J Burn Care Rehab 9(6): 589–598CrossRefGoogle Scholar
  167. [167]
    Horton JW, Garcia NM, White J et al (1995) Postburn cardiac contractile function and biochemical markers of postburn cardiac injury. J Am Coll Surgeons 181: 289–298Google Scholar
  168. [168]
    Horton JW, White J, Maass D et al (1998) Arginine in burn injury improves cardiac performance and prevents bacterial translocation. J Appl Physiol 84(2): 695–702PubMedGoogle Scholar
  169. [169]
    Cioffi WG, DeMeules JE, Gameili RL (1986) The effects of burn injury and fluid resuscitation on cardiac function in vitro. J Trauma 26: 638–643PubMedCrossRefGoogle Scholar
  170. [170]
    Murphy JT, Horton JW, Purdue GF et al (1997) Evaluation of troponin-I as an indicator of cardiac dysfunction following thermal injury. Burn Care Rehabil 45(4): 700–704Google Scholar
  171. [171]
    Leblanc M, Thibeault Y, Querin S (1997) Continuous haemofiltration and haemodiafiltration for acute renal failure in severely burned patients. Burns 23(2): 160–165PubMedCrossRefGoogle Scholar
  172. [172]
    Chrysopoulo MT, Jeschke MG, Dziewulski P et al (1999) Acute renal dysfunction in severely burned adults. J Trauma 46(1): 141–144PubMedCrossRefGoogle Scholar
  173. [173]
    Jeschke MG, Barrow RE, Wolf SE et al (1998) Mortality in burned children with acute renal failure. Arch Surg 133(7): 752–756PubMedCrossRefGoogle Scholar
  174. [174]
    Wolf SE, Rose JK, Desai MH et al (1997) Mortality determinants in massive pediatric burns. An analysis of 103 children with > or = 80% TBSA burns (> or = 70% fullthickness). Ann Surg 225(5): 554–565; discussion 565-559PubMedCrossRefGoogle Scholar
  175. [175]
    LeVoyer T, Cioffi WG, Jr, Pratt L et al (1992) Alterations in intestinal permeability after thermal injury. Arch Surg 127(1): 26–29; discussion 29-30PubMedCrossRefGoogle Scholar
  176. [176]
    Wolf SE, Ikeda H, Matin S et al (1999) Cutaneous burn increases apoptosis in the gut epithelium of mice. J Am Coll Surg 188(1): 10–16PubMedCrossRefGoogle Scholar
  177. [177]
    Ezzell RM, Carter EA, Yarmush ML et al (1993) Thermal injury-induced changes in the rat intestine brush border cytoskeleton. Surgery 114(3): 591–597PubMedGoogle Scholar
  178. [178]
    Carter EA, Udall JN, Kirkham SE et al (1986) Thermal injury and gastrointestinal function. I. Small intestinal nutrient absorption and DNA synthesis. J Burn Care Rehabil 7(6): 469–474PubMedCrossRefGoogle Scholar
  179. [179]
    Deitch EA, Rutan R, Waymack JP (1996) Trauma, shock, and gut translocation. New Horiz 4(2): 289–299PubMedGoogle Scholar
  180. [180]
    Deitch EA (1990) Intestinal permeability is increased in burn patients shortly after injury. Surgery 107(4): 411–416PubMedGoogle Scholar
  181. [181]
    Berthiaume F, Ezzell RM, Toner M et al (1994) Transport of fluorescent dextrans across the rat ileum after cutaneous thermal injury. Crit Care Med 22(3): 455–464PubMedCrossRefGoogle Scholar
  182. [182]
    Horton JW (1994) Bacterial translocation after burn injury: the contribution of ischemia and permeability changes. Shock 1(4): 286–290PubMedCrossRefGoogle Scholar
  183. [183]
    Gianotti L, Alexander JW, Fukushima R et al (1993) Translocation of Candida albicans is related to the blood flow of individual intestinal villi. Circ Shock 40(4): 250–257PubMedGoogle Scholar
  184. [184]
    Gamelli RL, He LK, Liu H et al (1998) Burn wound infection-induced myeloid suppression: the role of prostaglandin E2, elevated adenylate cyclase, and cyclic adenosine monophosphate. J Trauma 44(3): 469–474PubMedCrossRefGoogle Scholar
  185. [185]
    Shoup M, Weisenberger JM, Wang JL et al (1998) Mechanisms of neutropenia involving myeloid maturation arrest in burn sepsis. Ann Surg 228(1): 112–122PubMedCrossRefGoogle Scholar
  186. [186]
    Chitnis D, Dickerson C, Munster AM et al (1996) Inhibition of apoptosis in polymorphonuclear neutrophils from burn patients. J Leukoc Biol 59(6): 835–839PubMedGoogle Scholar
  187. [187]
    Rosenthal J, Thurman GW, Cusack N et al (1996) Neutrophils from patients after burn injury express a deficiency of the oxidase components p47-phox and p67-phox. Blood 88(11): 4321–4329PubMedGoogle Scholar
  188. [188]
    Vindenes HA, Bjerknes R (1997) Impaired actin polymerization and depolymerization in neutrophils from patients with thermal injury. Burns 23(2): 131–136PubMedCrossRefGoogle Scholar
  189. [189]
    Hunt JP, Hunter CT, Brownstein MR et al (1998) The effector component of the cytotoxic T-lymphocyte response has a biphasic pattern after burn injury. J Surg Res 80(2): 243–251PubMedCrossRefGoogle Scholar
  190. [190]
    Zedler S, Bone RC, Baue AE et al (1999) T-cell reactivity and its predictive role in immunosuppression after burns. Crit Care Med 27(1): 66–72PubMedCrossRefGoogle Scholar
  191. [191]
    Kelly JL, Lyons A, Soberg CC et al (1997) Anti-interleukin-10 antibody restores burn-induced defects in T-cell function. Surgery 122(2): 146–152PubMedCrossRefGoogle Scholar
  192. [192]
    Takagi K, Suzuki F, Barrow RE et al (1998) Recombinant human growth hormone modulates Th1 and Th2 cytokine response in burned mice. Ann Surg 228(1): 106–111PubMedCrossRefGoogle Scholar
  193. [193]
    Hultman CS, Yamamoto H, deSerres S et al (1997) Early but not late burn wound excision partially restores viral-specific T lymphocyte cytotoxicity. J Trauma 43(3): 441–447PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2012

Authors and Affiliations

  1. 1.Shriners Hospitals for ChildrenUniversity of Texas Medical Branch GalvestonUSA
  2. 2.Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Department of Surgery, Division of Plastic SurgeryUniversity of TorontoCanada
  3. 3.Department of Dermatology and AllergologyLudwig Maximilians UniversityMunichGermany

Personalised recommendations