Advertisement

Medical documentation of burn injuries

  • Herbert L. Haller
  • Michael Giretzlehner
  • Johannes Dirnberger
  • Robert Owen

Abstract

For successful treatment of burns one of the most important pillars is an adequate documentation. Otherwise, nobody in science, economics or quality control can comprehend this issue’s complexity [22]. Research, science and costing in burns are based on accurate assessment and documentation of burn injuries. Documentation required, is time consuming and labor intensive. For any scientific comparability of burns the exact and correct extent and depth of burns are essential.

Keywords

Algin Refraction Tetracycline Bradykinin Photography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alm J (2003) A Retrospective Study of TBSA-B Calculating;V Manual Estimated Burnchart versus Computerized Burncharts. Final Programme and Abstracts — 10 Congress European Burns Association Bergen, Norway Sept. 10-13 n 2003. Bergen, Norway: EBA; 2003: 158Google Scholar
  2. [2]
    Amirsheybani HR, Crecelius GM, Timothy NH, Pfeiffer M, Saggers GC, Manders EK (2001) The natural history of the growth of the hand: I. Hand area as a percentage of body surface area. Plast Reconstr Surg 107: 726–733PubMedCrossRefGoogle Scholar
  3. [3]
    Anselmo VJ, Zawacki BE (1977) Multispectral photographic analysis. A new quantitative tool to assist in the early diagnosis of thermal burn depth. Ann Biomed Eng 5: 179–193PubMedCrossRefGoogle Scholar
  4. [4]
    Arturson G (1996) Mechanism of Injury. In: Settle JAD (ed) Principles and practice of burns management. Churchill Livingstone, New York, pp 61–82Google Scholar
  5. [5]
    Bauer JA, Sauer T (1989) Cutaneous 10 MHz ultrasound B scan allows the quantitative assessment of burn depth. Burns Incl Therm Inj 15: 49–51PubMedCrossRefGoogle Scholar
  6. [6]
    Berry MG, Evison D, Roberts AH (2001) The influence of body mass index on burn surface area estimated from the area of the hand. Burns 27: 591–594PubMedCrossRefGoogle Scholar
  7. [7]
    Bjornson AB, Altemeier WA, Bjornson HS (1976) Reduction in C3 conversion in patients with severe thermal injury. J Trauma 16: 905–911PubMedCrossRefGoogle Scholar
  8. [8]
    Brink JA, Sheets PW, Dines KA, Etchison MR, Hanke CW, Sadove AM (1986) Quantitative assessment of burn injury in porcine skin with high-frequency ultrasonic imaging. Invest Radiol 21: 645–651PubMedCrossRefGoogle Scholar
  9. [9]
    Cantrell JH, Jr (1984) Can ultrasound assist an experienced surgeon in estimating burn depth? J Trauma 24: S64–S70PubMedGoogle Scholar
  10. [10]
    Carvajal HF (1994) Fluid resuscitation of pediatric burn victims: a critical appraisal. Pediatr Nephrol 8: 357–366PubMedCrossRefGoogle Scholar
  11. [11]
    Collins English Dictionary (2009) Harper Collins PublishersGoogle Scholar
  12. [12]
    Davies JWL (1997) Interactions of heat with tissues. In: Cooper GJ (ed) Scientific foundations of trauma. Butterworth-Heinemann, Oxford, pp 389–409Google Scholar
  13. [13]
    de Boer JF, Milner TE, van Gemert MJC (1977) Two-dimensional birefringence imaging in biological tissue by polarisation-sensitive optical coherence tomografy. Opt Len 22: 934–936CrossRefGoogle Scholar
  14. [14]
    Deering SH, Tobler K, Cypher R (2010) Improvement in documentation using an electronic checklist for shoulder dystocia deliveries. Obstet Gynecol 116: 63–66PubMedCrossRefGoogle Scholar
  15. [15]
    Devgan L, Bhat S, Aylward S, Spence RJ (2006) Modalities for the assessment of burn wound depth. J Burns Wounds 5:e2PubMedGoogle Scholar
  16. [16]
    Dirnberger J, Giretzlehner M, Ruhmer M, Haller H, Rodemund C (2003) Modelling human burn injuries in a three-dimensional virtual environment. Stud Health Technol Inform 94: 52–58PubMedGoogle Scholar
  17. [17]
    Eisenbeiss W, Marotz J, Schrade JP (1999) Reflectionoptical multispectral imaging method for objective determination of burn depth. Burns 25: 697–704PubMedCrossRefGoogle Scholar
  18. [18]
    Gatti JE, LaRossa D, Silverman DG, Hartford CE (1983) Evaluation of the burn wound with perfusion fluorometry. J Trauma 23: 202–206PubMedCrossRefGoogle Scholar
  19. [19]
    Giretzlehner M, Dirnberger J, Luckeneder T, Haller H, Rodemund C (2004) BurnCase 3D: A research product for effective and time-saving documentation of burn injuries. Annals of Burns and Fire Disasters XVII (2): 64–72Google Scholar
  20. [20]
    Livingston EH, Lee S (2001) Body surface area prediction in normal-weight and obese patients. Am J Physiol Endocrinol Metab 281:E586–E591PubMedGoogle Scholar
  21. [21]
    Haller H (2007) Data collection in burn injuries-Rationale for BurnCase 3D. Osteo trauma care 15: 34–41CrossRefGoogle Scholar
  22. [22]
    Haller HL, Dirnberger J, Giretzlehner M, et al (2009) “Understanding burns”: research project BurnCase 3D-overcome the limits of existing methods in burns documentation. Burns 35: 311–317PubMedCrossRefGoogle Scholar
  23. [23]
    Hammond JS, Ward CG (1987) Transfers from emergency room to burn center: errors in burn size estimate. J Trauma 27: 1161–1165PubMedCrossRefGoogle Scholar
  24. [24]
    Haslik W, Kamolz LP, Andel H, Winter W, Meissl G, Frey M (2004) The influence of dressings and ointments on the qualitative and quantitative evaluation of burn wounds by ICG video-angiography: an experimental setup. Burns 30: 232–235PubMedCrossRefGoogle Scholar
  25. [25]
    Heimbach D, Engrav L, Grube B, Marvin J (1992) Burn depth: a review. World J Surg 16: 10–15PubMedCrossRefGoogle Scholar
  26. [26]
    Heimbach D, Mann R, Engrav L (2002) Evaluation of burn wound management decisions. In: Herndon DN (ed) Total burn care. 2nd edn, Saunders, London, New York, pp 101–108Google Scholar
  27. [27]
    Hübner U, Flemming D, Schultz-Gödker A (2009) Software zur digitalen Wunddokumentation: Marktübersicht und Bewertungskriterien. WundM 3(6): 16–25Google Scholar
  28. [28]
    Ingenerf J (2009) Computergestützte strukturierte Befundung am Beispiel der Wunddokumentation. WundM 3(6): 264–268Google Scholar
  29. [29]
    Jackson DM (1953) The diagosis of the depth of burning. Br J Surg 40: 588–596PubMedCrossRefGoogle Scholar
  30. [30]
    Jaskille AD, Jeng JC, Sokolich JC, Lunsford P, Jordan MH (2007) Repetitive ischemia-reperfusion injury: a plausible mechanism for documented clinical burndepth progression after thermal injury. J Burn Care Res 28: 13–20PubMedCrossRefGoogle Scholar
  31. [31]
    Jeng JC, Bridgeman A, Shivnan L, et al (2003) Laser Doppler imaging determines need for excision and grafting in advance of clinical judgment: a prospective blinded trial. Burns 29: 665–670PubMedCrossRefGoogle Scholar
  32. [32]
    Jiao S, Yu W, Stoica G, Wang LV (2003) Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging. Appl Opt 42: 5191–5197PubMedCrossRefGoogle Scholar
  33. [33]
    Kamolz LP, Andel H, Haslik W, et al (2003) Indocyanine green video angiographies help to identify burns requiring operation. Burns 29: 785–791PubMedCrossRefGoogle Scholar
  34. [34]
    Kao CC, Garner WL (2000) Acute burns. Plast Reconstr Surg 105: 2482–2492PubMedCrossRefGoogle Scholar
  35. [35]
    Kim DE, Phillips TM, Jeng JC, et al (2001) Microvascular assessment of burn depth conversion during varying resuscitation conditions. J Burn Care Rehabil 22: 406–416PubMedCrossRefGoogle Scholar
  36. [36]
    Knaysi GA, Crikelair GF, Cosman B (1968) The role of nines: its history and accuracy. Plast Reconstr Surg 41: 560–563PubMedCrossRefGoogle Scholar
  37. [37]
    Lawson RN, Gaston JP (1964) Temperature measurements of localized pathological processes. Ann N Y Acad Sci. 121: 90–98PubMedCrossRefGoogle Scholar
  38. [38]
    Leape LL, Randolph JG (1965) The early surgical treatment of burns. II. Clinical application of intravenous vital dye (patent blue V) in the differentiation of partial and full-thickness burns. Surgery 57: 886–893PubMedGoogle Scholar
  39. [39]
    Lee JY, Choi JW (2006) Validity and reliability of an alginate method to measure body surface area. J Physiol Anthropol 25: 247–255PubMedCrossRefGoogle Scholar
  40. [40]
    Livingston EH, Lee S (2000) Percentage of burned body surface area determination in obese and nonobese patients. J Surg Res 91: 106–110PubMedCrossRefGoogle Scholar
  41. [41]
    Lu S, Xiang J, Jin S, et al (2002) [Histological observation of the effects of tangential excision within twenty-four postburn hours on the progressive injury of the progression of deep partial thickness burn wound]. Zhonghua Shao Shang Za Zhi 18: 235–237PubMedGoogle Scholar
  42. [42]
    Lund CC, Browder CN (1944) The estimate of the areas of burn. Surg Gyn Obstet 79: 352–358Google Scholar
  43. [43]
    Matouskova E, Broz L, Pokorna E, Koenigova R (2002) Prevention of burn wound conversion by allogenig ceratinocytes cultured on allegenic xenodermis. Cell and Tissue Banking 3: 29–35PubMedCrossRefGoogle Scholar
  44. [44]
    McGwin G, Jr., Cross JM, Ford JW, et al (2003) Longterm trends in mortality according to age among adult burn patients. J. Burn Care Rehabil 24: 21–25PubMedCrossRefGoogle Scholar
  45. [45]
    Miller PR, Kuo KN, Lubicky JP (1995) Clubfoot deformity in Down’s syndrome. Orthopedics 18: 449–452PubMedGoogle Scholar
  46. [46]
    Moritz AR, Henriques FC (1947) Studies of thermal injuries II. The relative importance of time and surface temperature in the causation of cutaneous burns. Am J Pathol 23: 695–720PubMedGoogle Scholar
  47. [47]
    Moserova J, Hlava P, Malinsky J (1982) Scope for ultrasound diagnosis of the depth of thermal damage. Preliminary report. Acta Chir Plast 24: 235–242PubMedGoogle Scholar
  48. [48]
    Nagel TR, Schunk JE (1997) Using the hand to estimate the surface area of a burn in children. Pediatr Emerg Care 13: 254–255PubMedCrossRefGoogle Scholar
  49. [49]
    Nelson KM, Turinsky J (1981) Local effect of burn on skeletal muscle insulin responsiveness. J Surg Res 31: 288–297PubMedCrossRefGoogle Scholar
  50. [50]
    Neuwalder JM, Sampson C, Breuing KH, Orgill DP (2002) A review of computer-aided body surface area determination: SAGE II and EPRI’s 3D Burn Vision. J Burn Care Rehabil 23: 55–59PubMedCrossRefGoogle Scholar
  51. [51]
    Nichter LS, Bryant CA, Edlich RF (1985) Efficacy of burned surface area estimates calculated from charts-the need for a computer-based model. J Trauma 25: 477–481PubMedCrossRefGoogle Scholar
  52. [52]
    Nwariaku FE, Sikes PJ, Lightfoot E, Mileski WJ, Baxter C (1996) Effect of a bradykinin antagonist on the local inflammatory response following thermal injury. Burns 22: 324–327PubMedCrossRefGoogle Scholar
  53. [53]
    Papp A, Kiraly K, Harma M, Lahtinen T, Uusaro A, Alhava E (2004) The progression of burn depth in experimental burns: a histological and methodological study. Burns 30: 684–690PubMedCrossRefGoogle Scholar
  54. [54]
    Park BH, Saxer C, Srinivas SM, Nelson JS, de Boer JF (2001) In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography. J Biomed Opt 6: 474–479PubMedCrossRefGoogle Scholar
  55. [55]
    Rawlingson A (2003) Nitric oxide, inflammation and acute burn injury. Burns 29: 631–640PubMedCrossRefGoogle Scholar
  56. [56]
    Ref Type: Internet CommunicationGoogle Scholar
  57. [57]
    Renkielska A, Nowakowski A, Kaczmarek M, et al (2005) Static thermography revisited-an adjunct method for determining the depth of the burn injury. Burns 31: 768–775PubMedCrossRefGoogle Scholar
  58. [58]
    Renkielska A, Nowakowski A, Kaczmarek M, Ruminski J (2006) Burn depths evaluation based on active dynamic IR thermal imaging-a preliminary study. Burns 32: 867–875PubMedCrossRefGoogle Scholar
  59. [59]
    Robson MC, Del Beccaro EJ, Heggers JP (1979) The effect of prostaglandins on the dermal microcirculation after burning, and the inhibition of the effect by specific pharmacological agents. Plast Reconstr Surg 63: 781–787PubMedCrossRefGoogle Scholar
  60. [60]
    Rossiter ND, Chapman P, Haywood IA (1996) How big is a hand? Burns 22: 230–231PubMedCrossRefGoogle Scholar
  61. [61]
    Saffle JR, Edelman L, Theurer L, et al (2009) Telemedicine evaluation of acute burns is accurate and cost-effective. J Trauma 67: 358–365PubMedCrossRefGoogle Scholar
  62. [62]
    Samuels JG (2010) Abstracting pain management documentation from the electronic medical record: comparison of three hospitals. Appl Nurs Res (epub ahead of print)Google Scholar
  63. [63]
    Sawhney CP, Sharma RK, Rao KR, Kaushish R (1989) Long-term experience with 1 per cent topical silver sulphadiazine cream in the management of burn wounds. Burns 15: 403–406PubMedCrossRefGoogle Scholar
  64. [64]
    Shangraw RE, Turinsky J (1979) Local effect of burn injury on glucose and amino acid metabolism by skeletal muscle. JPEN J Parenter Enteral Nutr 3: 323–327PubMedCrossRefGoogle Scholar
  65. [65]
    Singh V, Devgan L, Bhat S, Milner SM (2007) The pathogenesis of burn wound conversion. Ann Plast Surg 59: 109–115PubMedCrossRefGoogle Scholar
  66. [66]
    Steen M (2002) Leitlinien Verbrennungsbehandlung der Deutschen Gesellschaft für Verbrennungsmedizin, 1-2-2002Google Scholar
  67. [67]
    Tokunaga Y, Ozaki N, Wakashiro S, et al (1988) Effects of perfusion pressure during flushing on the viability of the procured liver using noninvasive fluorometry. Transplantation 45: 1031–1035PubMedCrossRefGoogle Scholar
  68. [68]
    Törnvall E, Wilhelmsson S, Wahren LK (2004) Electronic nursing documentation in primary health care. Scand J Caring Sci 18: 310–317PubMedCrossRefGoogle Scholar
  69. [69]
    Turinsky J, Shangraw R (1979) Biphasic alterations in glucose metabolism by soleus muscle from the burned limb. Adv Shock Res 2: 23–30PubMedGoogle Scholar
  70. [70]
    Verbraecken J, Van de HP, De BW, et al (2006) Body surface area in normal-weight, overweight, and obese adults. A comparison study. Metabolism 55: 515–524PubMedCrossRefGoogle Scholar
  71. [71]
    Wachtel TL, Berry CC, Wachtel EE, Frank HA (2000) The inter-rater reliability of estimating the size of burns from various burn area chart drawings. Burns 26: 156–170PubMedCrossRefGoogle Scholar
  72. [72]
    Wachtel TL, Leopold GR, Frank HA, Frank DH (1986) B-mode ultrasonic echo determination of depth of thermal injury. Burns Incl Therm Inj 12: 432–437PubMedCrossRefGoogle Scholar
  73. [73]
    Watts AM, Tyler MP, Perry ME, Roberts AH, McGrouther DA (2001) Burn depth and its histological measurement. Burns 27: 154–160PubMedCrossRefGoogle Scholar
  74. [74]
    Webne S, Kaplan BJ, Shaw M (1989) Pediatric burn prevention: an evaluation of the efficacy of a strategy to reduce tap water temperature in a population at risk for scalds. J Dev Behav Pediatr 10: 187–191PubMedCrossRefGoogle Scholar
  75. [75]
    Zawacki BE, Walker HL (1970) An evaluation of patent blue V, bromphenol blue, and tetracycline for the diagnosis of burn depth. Plast Reconstr Surg 45: 459–465PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2012

Authors and Affiliations

  • Herbert L. Haller
    • 1
  • Michael Giretzlehner
    • 2
  • Johannes Dirnberger
    • 2
  • Robert Owen
    • 2
  1. 1.UKH Linz der AUVALinzAustria
  2. 2.Research Unit for Medical-Informatics, RISC Software GmbHJohannes Kepler University Linz, Upper Austrian Research GmbHHagenbergAustria

Personalised recommendations