Skip to main content

Treatment of burns — established and novel technology

  • Chapter

Abstract

Burn trauma is one of the worst injuries suffered worldwide with an incidence of approximately 2 million cases annually [1]. Over the past decades, progress in the treatment of severe burn injuries has significantly decreased morbidity and mortality [2]. The improvements in survival have been most notable in the elderly patient population [3, 4]; however, survival has also improved in severely burned pediatric patients. Four major areas of advancement in burn care have been identified:

  • Fluid resuscitation and early patient management

  • Control of infection

  • Modulation of the hyper-metabolic response

  • Surgery and wound care.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brigham PA, McLoughlin E (1996) Burn incidence and medical care use in the United States: estimates, trends, and data sources. J Burn Care Rehabil 17(2): 95–107

    Article  PubMed  CAS  Google Scholar 

  2. Pereira C, Murphy K, Herndon D (2004) Outcome measures in burn care. Is mortality dead? Burns 30(8): 761–771

    Article  PubMed  Google Scholar 

  3. Barrow RE, Herndon DN (1988) Thermal burns, gender, and survival. Lancet 2(8619): 1076–1077

    Article  PubMed  CAS  Google Scholar 

  4. Janzekovic Z (1970) A new concept in the early excision and immediate grafting of burns. J Trauma 10(12): 1103–1108

    Article  PubMed  CAS  Google Scholar 

  5. Merrell SW et al (1989) The declining incidence of fatal sepsis following thermal injury. J Trauma 29(10): 1362–1366

    Article  PubMed  CAS  Google Scholar 

  6. Herndon DN et al (1989) A comparison of conservative versus early excision. Therapies in severely burned patients. Ann Surg 209(5): 547–553

    Article  PubMed  CAS  Google Scholar 

  7. Barret JP et al (1999) Total burn wound excision of massive pediatric burns in the first 24 hours post burn injury. Ann Burns Fire Disasters XIII(1): 25–27

    Google Scholar 

  8. Barret JP et al (1999) Effect of topical and subcutaneous epinephrine in combination with topical thrombin in blood loss during immediate near-total burn wound excision in pediatric burned patients. Burns 25(6): 509–513

    Article  PubMed  CAS  Google Scholar 

  9. Herndon DN et al (1990) Effects of recombinant human growth hormone on donor-site healing in severely burned children. Ann Surg 212(4): 424–9; discussion 430-1

    Article  PubMed  CAS  Google Scholar 

  10. Herndon DN et al (1995) Characterization of growth hormone enhanced donor site healing in patients with large cutaneous burns. Ann Surg 221(6): 649–56; discussion 656-659

    Article  PubMed  CAS  Google Scholar 

  11. Dyess D et al (1995) The use of fibrin sealant in burn treatment. In: Schlag G, HJ (eds) Fibrin sealing in surgical and non-surgical fields. Springer, Berlin, pp 120–127

    Chapter  Google Scholar 

  12. Mittermayr R et al (2006) Skin graft fixation by slow clotting fibrin sealant applied as a thin layer. Burns 32(3): 305–311

    Article  PubMed  Google Scholar 

  13. Branski LK et al (2007) Longitudinal assessment of Integra in primary burn management: a randomized pediatric clinical trial. Crit Care Med 35(11): 2615–2623

    Article  PubMed  Google Scholar 

  14. Carsin H et al (2000) Cultured epithelial autografts in extensive burn coverage of severely traumatized patients: a five year single-center experience with 30 patients. Burns 26(4): 379–387

    Article  PubMed  CAS  Google Scholar 

  15. Herndon DN, Parks DH (1986) Comparison of serial debridement and autografting and early massive excision with cadaver skin overlay in the treatment of large burns in children. J Trauma 26(2): 149–152

    Article  PubMed  CAS  Google Scholar 

  16. Branski LK et al (2007) Amnion in the treatment of pediatric partial-thickness facial burns. Burns 34(3): 393–399

    Article  PubMed  Google Scholar 

  17. Barret JP et al (2000) Biobrane versus 1 % silver sulfadiazine in second-degree pediatric burns. Plast Reconstr Surg 105(1): 62–65

    Article  PubMed  CAS  Google Scholar 

  18. Gallagher JJ, Wolf SE, Herndon DN (2007) Burns. In: Townsend CM, Jr (ed) Sabiston Textbook of Surgery. Saunders Elsevier, Philadelphia

    Google Scholar 

  19. Dhennin C (2002) [Methods of covering severe burns]. Soins 2002(669): 45–47

    Google Scholar 

  20. Jones I, Currie L, Martin R (2002) A guide to biological skin substitutes. Br J Plast Surg 55(3): 185–193

    Article  PubMed  CAS  Google Scholar 

  21. Bishop JF (1995) Pediatric considerations in the use of Biobrane in burn wound management. J Burn Care Rehabil 16(3 Pt 1): 331–3; discussion 333-334

    Article  PubMed  CAS  Google Scholar 

  22. Cassidy C et al (2005) Biobrane versus duoderm for the treatment of intermediate thickness burns in children: a prospective, randomized trial. Burns 31(7): 890–893

    Article  PubMed  Google Scholar 

  23. Demling RH (1995) Use of Biobrane in management of scalds. J Burn Care Rehabil 16(3 Pt 1): 329–330

    Article  PubMed  CAS  Google Scholar 

  24. Lal S et al (2000) Biobrane improves wound healing in burned children without increased risk of infection. Shock 14(3): 314–8; discussion 318-319

    Article  PubMed  CAS  Google Scholar 

  25. Lang EM et al (2005) Biobrane in the treatment of burn and scald injuries in children. Ann Plast Surg 55(5): 485–489

    Article  PubMed  CAS  Google Scholar 

  26. Ou LF et al (1998) Use of Biobrane in pediatric scald burns-experience in 106 children. Burns 24(1): 49–53

    Article  PubMed  CAS  Google Scholar 

  27. Whitaker IS, Prowse S, Potokar TS (2008) A critical evaluation of the use of Biobrane as a biologic skin substitute: a versatile tool for the plastic and reconstructive surgeon. Ann Plast Surg 60(3): 333–337

    Article  PubMed  CAS  Google Scholar 

  28. Uhlig C et al (2007) Suprathel-an innovative, resorbable skin substitute for the treatment of burn victims. Burns 33(2): 221–229

    Article  PubMed  CAS  Google Scholar 

  29. Schwarze H et al (2007) Suprathel, a new skin substitute, in the management of donor sites of split-thickness skin grafts: results of a clinical study. Burns 33(7): 850–854

    Article  PubMed  CAS  Google Scholar 

  30. Schwarze H et al (2008)Suprathel, a new skin substitute, in the management of partial-thickness burn wounds: results of a clinical study. Ann Plast Surg 60(2): 181–185

    Article  PubMed  CAS  Google Scholar 

  31. Maral T et al (1999) Effectiveness of human amnion preserved long-term in glycerol as a temporary biological dressing. Burns 25(7): 625–635

    Article  PubMed  CAS  Google Scholar 

  32. Robson MC, Krizek TJ (1973) The effect of human amniotic membranes on the bacteria population of infected rat burns. Ann Surg 177(2): 144–149

    Article  PubMed  CAS  Google Scholar 

  33. Robson MC et al (1973) Amniotic membranes as a temporary wound dressing. Surg Gynecol Obstet 136(6): 904–906

    PubMed  CAS  Google Scholar 

  34. Ninman C, Shoemaker P (1975) Human amniotic membranes for burns. Am J Nurs 75(9): 1468–1469

    PubMed  CAS  Google Scholar 

  35. Salisbury RE, Carnes R, McCarthy LR (1980) Comparison of the bacterial clearing effects of different biologic dressings on granulating wounds following thermal injury. Plast Reconstr Surg 66(4): 596–598

    Article  PubMed  CAS  Google Scholar 

  36. Quinby WC, Jr et al (1982) Clinical trials of amniotic membranes in burn wound care. Plast Reconstr Surg 70(6): 711–717

    Article  PubMed  Google Scholar 

  37. Gajiwala K, Gajiwala AL (2004) Evaluation of lyophilised, gamma-irradiated amnion as a biological dressing. Cell Tissue Bank 5(2): 73–80

    Article  PubMed  Google Scholar 

  38. Douglas B (1952) Homografts of fetal membranes as a covering for large wounds; especially those from burns; an experimental and clinical study. J Tn State Med Assoc 45(6): 230–235

    PubMed  CAS  Google Scholar 

  39. Haberal M et al (1987) The use of silver nitrate-incorporated amniotic membrane as a temporary dressing. Burns Incl Therm Inj 13(2): 159–163

    Article  PubMed  CAS  Google Scholar 

  40. Ramakrishnan KM, Jayaraman V (1997) Management of partial-thickness burn wounds by amniotic membrane: a cost-effective treatment in developing countries. Burns 23 [Suppl 1]: S33–36

    Article  PubMed  Google Scholar 

  41. Ravishanker R, Bath AS, Roy R (2003) ‘Amnion Bank’ the use of long term glycerol preserved amniotic membranes in the management of superficial and superficial partial thickness burns. Burns 29(4): 369–374

    Article  PubMed  CAS  Google Scholar 

  42. Tyszkiewicz JT et al (1999) Amnion allografts prepared in the Central Tissue Bank in Warsaw. Ann Transplant 4(3-4): 85–90

    PubMed  CAS  Google Scholar 

  43. Hennerbichler S et al (2007) The influence of various storage conditions on cell viability in amniotic membrane. Cell Tissue Bank 8: 1–8

    Article  PubMed  CAS  Google Scholar 

  44. Lee EW (1880) Zoografting in a burn case. Boston Med Surg 103(260)

    Google Scholar 

  45. Brennan, Mediskin© I, 2010, Brennan Medical LLC: St Paul, MO

    Google Scholar 

  46. Bromberg BE, Song IC, Mohn MP (1965) The use of pig skin as a temporary biological dressing. Plast Reconstr Surg 36: 80–90

    Article  PubMed  CAS  Google Scholar 

  47. Cohen IKDRFLWJ (1992) Wound healing: biochemical & clinical aspects. W. B. Saunders Co, Philadelphia, xxv, 630 p

    Google Scholar 

  48. Fang Z (1991) Application of skin and skin substitutes to burns wounds. In: Leung P (ed) Burns treatment and research. World Scientific, Singapore, pp 97–106

    Google Scholar 

  49. Forbes P (1969) Advances in the biology of skin hair growth Pergamon, Oxford, pp 419–432

    Google Scholar 

  50. Zawacki BE (1974) Reversal of capillary stasis and prevention of necrosis in burns. Ann Surg 180(1): 98–102

    Article  PubMed  CAS  Google Scholar 

  51. Ersek RA, Denton DR (1984) Silver-impregnated porcine xenografts for treatment of meshed autografts. Ann Plast Surg 13(6): 482–487

    Article  PubMed  CAS  Google Scholar 

  52. Ersek RA, Navarro JA (1990) Maximizing wound healing with silver-impregnated porcine xenograft. Todays OR Nurse 12(12): 4–9

    CAS  Google Scholar 

  53. Cope O et al (1947) Expeditious care of full-thickness burn wounds by surgical excision and grafting. Ann Surg 125(1): 1–22

    Article  Google Scholar 

  54. Jackson D et al (1960) Primary excision and grafting of large burns. Ann Surg 152: 167–89

    Article  PubMed  CAS  Google Scholar 

  55. Burke JF et al (1981) Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 194(4): 413–428

    Article  PubMed  CAS  Google Scholar 

  56. Heimbach DM et al (2003) Multicenter postapproval clinical trial of Integra dermal regeneration template for burn treatment. J Burn Care Rehabil 24(1): 42–48

    Article  PubMed  Google Scholar 

  57. Wainwright DJ (1995) Use of an acellular allograft dermal matrix (AlloDerm) in the management of fullthickness burns. Burns 21(4): 243–248

    Article  PubMed  CAS  Google Scholar 

  58. Sheridan RL, Choucair RJ (1997) Acellular allogenic dermis does not hinder initial engraftment in burn wound resurfacing and reconstruction. J Burn Care Rehabil 18(6): 496–499

    Article  PubMed  CAS  Google Scholar 

  59. Barret JP et al (2000) Cost-efficacy of cultured epidermal autografts in massive pediatric burns. Ann Surg 231(6): 869–876

    Article  PubMed  CAS  Google Scholar 

  60. Sood R et al (2010) Cultured epithelial autografts for coverage of large burn wounds in eighty-eight patients: the Indiana University experience. J Burn Care Res 31(4): 559–568

    Article  PubMed  Google Scholar 

  61. Wood F., Kolybaba ML, Allen P (2006) The use of cultured epithelial autograft in the treatment of major burn injuries: a critical review of the literature. Burns 32(4): 395–401

    Article  PubMed  CAS  Google Scholar 

  62. Wood FM et al (2007) The use of a non-cultured autologous cell suspension and Integra dermal regeneration template to repair full-thickness skin wounds in a porcine model: a one-step process. Burns 33(6): 693–700

    Article  PubMed  Google Scholar 

  63. Reid MJ et al (2007) Effect of artificial dermal substitute, cultured keratinocytes and split thickness skin graft on wound contraction. Wound Repair Regen 15(6): 889–896

    Article  PubMed  Google Scholar 

  64. James SE et al (2010) Sprayed cultured autologous keratinocytes used alone or in combination with meshed autografts to accelerate wound closure in difficult-toheal burns patients. Burns 36(3): e10–20

    Article  PubMed  Google Scholar 

  65. Zweifel CJ et al (2008) Initial experiences using noncultured autologous keratinocyte suspension for burn wound closure. J Plast Reconstr Aesthet Surg 61(11): e1–4

    Article  PubMed  CAS  Google Scholar 

  66. Gerlach JC et al (2011) Method for autologous single skin cell isolation for regenerative cell spray transplantation with non-cultured cells. Int J Artif Organs 34(3): 271–27 9

    Article  PubMed  Google Scholar 

  67. Hartmann B et al (2007) Sprayed cultured epithelial autografts for deep dermal burns of the face and neck. Ann Plast Surg 58(1): 70–73

    Article  PubMed  CAS  Google Scholar 

  68. Devauchelle B et al (2006) First human face allograft: early report. Lancet 368(9531): 203–209

    Article  PubMed  Google Scholar 

  69. Pomahac B et al (2011) Face transplantation. Curr Probl Surg 48(5): 293–357

    Article  PubMed  Google Scholar 

  70. Pomahac B et al (2011) Restoration of facial form and function after severe disfigurement from burn injury by a composite facial allograft. Am J Transplant 11(2): 386–393

    Article  PubMed  CAS  Google Scholar 

  71. Soni CV et al (2010) Psychosocial considerations in facial transplantation. Burns 36(7): 959–964

    Article  PubMed  Google Scholar 

  72. O’Neill H, Godden D (2009) Ethical issues of facial transplantation. Br J Oral Maxillofac Surg 47(6): 443–445

    Article  PubMed  Google Scholar 

  73. Pushpakumar SB et al (2010) Clinical considerations in face transplantation. Burns 36(7): 951–958

    Article  PubMed  Google Scholar 

  74. Boyce ST, Glatter R, Kitzmiller WJ (1995) Treatment of chronic wounds with cultured cells and biopolymers: a pilot study. Wounds 1995(7): 24–29

    Google Scholar 

  75. Boyce ST, Supp AP, Swope VB (2002) Vitamin C regulates keratinocyte viability, epidermal barrier, and basement membrane formation in vitro, and reduces wound contraction after grafting of cultured skin substitutes. J Investig Dermatol 118: 565–572

    Article  PubMed  CAS  Google Scholar 

  76. Hansbrough JF et al (1989) Burn wound closure with cultured autologous keratinocytes and fibroblasts attached to a collagen-glycosaminoglycan substrate. JAMA 262(15): 2125–2130

    Article  PubMed  CAS  Google Scholar 

  77. Boyce ST, Williams ML (1993) Lipid supplemented medium induces lamellar bodies and precursors of barrier lipids in cultured analogues of human skin. J Invest Dermatol 101(2): 180–184

    Article  PubMed  CAS  Google Scholar 

  78. Prunieras M, Regnier M, Woodley DT (1983) Methods for cultivation of keratinocytes at the air-liquid interface. J Investig Dermatol 81: 28S–33S

    Article  PubMed  CAS  Google Scholar 

  79. Swope VB et al (1997) Regulation of pigmentation in cultured skin substitutes by cytometric sorting of melanocytes and keratinocytes. J Invest Dermatol 109(3): 289–295

    Article  PubMed  CAS  Google Scholar 

  80. Supp DM et al (2000) Enhanced vascularization of cultured skin substitutes genetically modified to overexpress vascular endothelial growth factor. J Invest Dermatol 114(1): 5–13

    Article  PubMed  CAS  Google Scholar 

  81. Butler KL et al (2010) Stem cells and burns: review and therapeutic implications. J Burn Care Res 31(6): 874–881

    Article  PubMed  Google Scholar 

  82. Wu Y et al (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25(10): 2648–2659

    Article  PubMed  CAS  Google Scholar 

  83. Burd A et al (2007) Stem cell strategies in burns care. Burns 33(3): 282–291

    Article  PubMed  CAS  Google Scholar 

  84. Korbling M, Estrov Z, Champlin R (2003) Adult stem cells and tissue repair. Bone Marrow Transplant 32 [Suppl 1]: S23–24

    Article  PubMed  CAS  Google Scholar 

  85. Mansilla E et al (2006) Bloodstream cells phenotypically identical to human mesenchymal bone marrow stem cells circulate in large amounts under the influence of acute large skin damage: new evidence for their use in regenerative medicine. Transplant Proc 38(3): 967–969

    Article  PubMed  CAS  Google Scholar 

  86. Weil BR et al (2009) Stem cells in sepsis. Ann Surg 250(1): 19–27

    Article  PubMed  Google Scholar 

  87. Guenou H et al (2009) Human embryonic stem-cell derivatives for full reconstruction of the pluristratified epidermis: a preclinical study. Lancet 374(9703): 1745–1753

    Article  PubMed  CAS  Google Scholar 

  88. Hernandez A, Evers BM (1999) Functional genomics: clinical effect and the evolving role of the surgeon. Arch Surg 134(11): 1209–1215

    Article  PubMed  CAS  Google Scholar 

  89. Khavari PA, Rollman O, Vahlquist A (2002) Cutaneous gene transfer for skin and systemic diseases. J Intern Med 252(1): 1–10

    Article  PubMed  CAS  Google Scholar 

  90. Kozarsky KF, Wilson JM (1993) Gene therapy: adenovirus vectors. Curr Opin Genet Dev 3(3): 499–503

    Article  PubMed  CAS  Google Scholar 

  91. Lu B et al (1997) Topical application of viral vectors for epidermal gene transfer. J Invest Dermatol 108(5): 803–808

    Article  PubMed  CAS  Google Scholar 

  92. Silman NJ, Fooks AR (2000) Biophysical targeting of adenovirus vectors for gene therapy. Curr Opin Mol Ther 2(5): 524–531

    PubMed  CAS  Google Scholar 

  93. Bett AJ, Prevec L, Graham FL (1993) Packaging capacity and stability of human adenovirus type 5 vectors. J Virol 67(10): 5911–5921

    PubMed  CAS  Google Scholar 

  94. Liechty KW et al (1999) Adenoviral-mediated overexpression of platelet-derived growth factor-B corrects ischemic impaired wound healing. J Invest Dermatol 113(3): 375–383

    Article  PubMed  CAS  Google Scholar 

  95. Badillo AT et al (2007) Lentiviral gene transfer of SDF-1alpha to wounds improves diabetic wound healing. J Surg Res 143(1): 35–42

    Article  PubMed  CAS  Google Scholar 

  96. Deodato B et al (2002) Recombinant AAV vector encoding human VEGF165 enhances wound healing. Gene Ther 9(12): 777–785

    Article  PubMed  CAS  Google Scholar 

  97. Galeano M et al (2003) Effect of recombinant adenoassociated virus vector-mediated vascular endothelial growth factor gene transfer on wound healing after burn injury. Crit Care Med 31(4): 1017–1025

    Article  PubMed  CAS  Google Scholar 

  98. Chen S et al (2005) Efficient transduction of vascular endothelial cells with recombinant adeno-associated virus serotype 1 and 5 vectors. Hum Gene Ther 16(2): 235–247

    Article  PubMed  CAS  Google Scholar 

  99. Carretero M et al (2004) A cutaneous gene therapy approach to treat infection through keratinocyte-targeted overexpression of antimicrobial peptides. FASEB J 18(15): 1931–1933

    PubMed  CAS  Google Scholar 

  100. Morgan JR et al (1987) Expression of an exogenous growth hormone gene by transplantable human epidermal cells. Science 237(4821): 1476–1479

    Article  PubMed  CAS  Google Scholar 

  101. Eming SA et al (1995) Genetically modified human epidermis overexpressing PDGF-A directs the development of a cellular and vascular connective tissue stroma when transplanted to athymic mice-implications for the use of genetically modified keratinocytes to modulate dermal regeneration. J Invest Dermatol 105(6): 756–763

    Article  PubMed  CAS  Google Scholar 

  102. Eming SA et al (1998) Genetically modified human keratinocytes overexpressing PDGF-A enhance the performance of a composite skin graft. Hum Gene Ther 9(4): 529–539

    Article  PubMed  CAS  Google Scholar 

  103. Eming SA et al (1996) Targeted expression of insulinlike growth factor to human keratinocytes: modification of the autocrine control of keratinocyte proliferation. J Invest Dermatol 107(1): 113–120

    Article  PubMed  CAS  Google Scholar 

  104. Eming SA et al (1999) Particle-mediated gene transfer of PDGF isoforms promotes wound repair. J Invest Dermatol 112(3): 297–302

    Article  PubMed  CAS  Google Scholar 

  105. Hengge UR et al (1995) Cytokine gene expression in epidermis with biological effects following injection of naked DNA. Nat Genet 10(2): 161–166

    Article  PubMed  CAS  Google Scholar 

  106. Vogel JC (2000) Nonviral skin gene therapy. Hum Gene Ther 11(16): 2253–2259

    Article  PubMed  CAS  Google Scholar 

  107. Eriksson E et al (1998) In vivo gene transfer to skin and wound by microseeding. J Surg Res 78(2): 85–91

    Article  PubMed  CAS  Google Scholar 

  108. Nanney LB et al (2000) Boosting epidermal growth factor receptor expression by gene gun transfection stimulates epidermal growth in vivo. Wound Repair Regen 8(2): 117–127

    Article  PubMed  CAS  Google Scholar 

  109. Dileo J et al (2003) Gene transfer to subdermal tissues via a new gene gun design. Hum Gene Ther 14(1): 79–87

    Article  PubMed  CAS  Google Scholar 

  110. Baker LL et al (1997) Effects of electrical stimulation on wound healing in patients with diabetic ulcers. Diabetes Care 20(3): 405–412

    Article  PubMed  CAS  Google Scholar 

  111. Gardner SE, Frantz RA, Schmidt FL (1999) Effect of electrical stimulation on chronic wound healing: a meta-analysis. Wound Repair Regen 7(6): 495–503

    Article  PubMed  CAS  Google Scholar 

  112. Lee PY, Chesnoy S, Huang L (2004) Electroporatic delivery of TGF-beta1 gene works synergistically with electric therapy to enhance diabetic wound healing in db/db mice. J Invest Dermatol 123(4): 791–798

    Article  PubMed  CAS  Google Scholar 

  113. Marti G et al (2004) Electroporative transfection with KGF-1 DNA improves wound healing in a diabetic mouse model. Gene Ther 11(24): 1780–1785

    Article  PubMed  CAS  Google Scholar 

  114. Felgner PL, Ringold GM (1989) Cationic liposome-mediated transfection. Nature 337(6205): 387–388

    Article  PubMed  CAS  Google Scholar 

  115. Jeschke MG et al (2000) Biodistribution and feasibility of non-viral IGF-I gene transfers in thermally injured skin. Lab Invest 80(2): 151–158

    Article  PubMed  CAS  Google Scholar 

  116. Slama J, Davidson JM, Eriksson E (2001) Gene therapy of wounds. In: Falanga V (ed) Cutaneous wound healing. Taylor & Francis, London, pp 123–140

    Google Scholar 

  117. Alexander MY, Akhurst RJ (1995) Liposome-medicated gene transfer and expression via the skin. Hum Mol Genet 4(12): 2279–2285

    Article  PubMed  CAS  Google Scholar 

  118. Jeschke MG et al (1999) IGF-I gene transfer in thermally injured rats. Gene Ther 6(6): 1015–1020

    Article  PubMed  CAS  Google Scholar 

  119. Sun L et al (1997) Transfection with aFGF cDNA improves wound healing. J Invest Dermatol 108(3): 313–318.

    Article  PubMed  CAS  Google Scholar 

  120. Jeschke MG, Schubert T, Klein D (2004) Exogenous liposomal IGF-I cDNA gene transfer leads to endog enous cellular and physiological responses in an acute wound. Am J Physiol Regul Integr Comp Physiol 286(5): R958–966

    Article  PubMed  CAS  Google Scholar 

  121. Branski LK et al (2010) Pre-clinical evaluation of liposomal gene transfer to improve dermal and epidermal regeneration. Gene Ther 17(6): 770–778

    Article  PubMed  CAS  Google Scholar 

  122. Lynch SE et al (1987) Role of platelet-derived growth factor in wound healing: synergistic effects with other growth factors. Proc Natl Acad Sci USA 84(21): 7696–7700

    Article  PubMed  CAS  Google Scholar 

  123. Sprugel KH et al (1987) Effects of growth factors in vivo. I. Cell ingrowth into porous subcutaneous chambers. Am J Pathol 129(3): 601–613

    PubMed  CAS  Google Scholar 

  124. Jeschke MG, Klein D (2004) Liposomal gene transfer of multiple genes is more effective than gene transfer of a single gene. Gene Ther 11(10): 847–855

    Article  PubMed  CAS  Google Scholar 

  125. Shea LD et al (1999) DNA delivery from polymer matrices for tissue engineering. Nat Biotechnol 17(6): 551–554

    Article  PubMed  CAS  Google Scholar 

  126. Fu H et al (2005) A calcium phosphate-based gene delivery system. J Biomed Mater Res A 74(1): 40–48

    PubMed  Google Scholar 

  127. Eriksson E (2000) Gene transfer in wound healing. Adv Skin Wound Care 13[2 Suppl]: 20–22

    PubMed  CAS  Google Scholar 

  128. Lawrie A et al (2000) Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther 7(23): 2023–2027

    Article  PubMed  CAS  Google Scholar 

  129. Chandler LA et al (2000) Matrix-enabled gene transfer for cutaneous wound repair. Wound Repair Regen 8(6): 473–479

    Article  PubMed  CAS  Google Scholar 

  130. Voigt M et al (1999) Cultured epidermal keratinocytes on a microspherical transport system are feasible to reconstitute the epidermis in full-thickness wounds. Tissue Eng 5(6): 563–572

    Article  PubMed  CAS  Google Scholar 

  131. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89(12): 5547–5551

    Article  PubMed  CAS  Google Scholar 

  132. Breuing K et al (1992) Healing of partial thickness porcine skin wounds in a liquid environment. J Surg Res 52(1): 50–58

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludwik K. Branski M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Branski, L.K., Dibildox, M., Shahrokhi, S., Jeschke, M.G. (2012). Treatment of burns — established and novel technology. In: Jeschke, M.G., Kamolz, LP., Sjöberg, F., Wolf, S.E. (eds) Handbook of Burns. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0348-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0348-7_21

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0347-0

  • Online ISBN: 978-3-7091-0348-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics