Skip to main content

Vascular Endothelial Cells as Immunological Targets in Atheroscleroisis

  • Chapter
  • First Online:
Inflammation and Atherosclerosis

Abstract

Under normal circumstances, vascular endothelium performs various functions related to homeostasis of the arterial wall, including control of vessel wall tone and vascular permeability, maintenance of blood fluidity and quiescence of inflammation [1–5]. Compromise of these activities, collectively described as endothelial dysfunction, is an important contributor to the process leading to atherosclerosis. Atherosclerotic plaques contain cellular and molecular effectors of both innate and adaptive immunity, and it is increasingly appreciated that these immune system cells play an important role in various stages of the atherosclerotic process [6–11]. In this chapter, we will focus on how the immune system can alter (“activate”), injure or otherwise impair EC functions and how these changes may contribute to atherogenesis. We will further consider how, once the process of atherogenesis has been initiated, the altered endothelium may contribute to the progression of atherosclerosis both through maintenance of a chronic inflammatory response and through modulation of the characteristics of the immune response. Finally, we will consider how impaired endothelium may contribute to the sequelae of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnout J, Hoylaerts MF, Lijnen HR (2006) Haemostasis. Handb Exp Pharmacol 176(Pt 2):1–41

    Article  PubMed  CAS  Google Scholar 

  2. Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84(3):869–901

    Article  PubMed  CAS  Google Scholar 

  3. Busse R, Fleming I (2006) Vascular endothelium and blood flow. Handb Exp Pharmacol 176(Pt 2):43–78

    Article  PubMed  CAS  Google Scholar 

  4. Ley K, Reutershan J (2006) Leucocyte-endothelial interactions in health and disease. Handb Exp Pharmacol 176(Pt 2):97–133

    Article  PubMed  CAS  Google Scholar 

  5. Minshall RD, Malik AB (2006) Transport across the endothelium: regulation of endothelial permeability. Handb Exp Pharmacol 176(Pt 1):107–144

    Article  PubMed  Google Scholar 

  6. Hansson GK, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6(7):508–519

    Article  PubMed  CAS  Google Scholar 

  7. Jonasson L, Holm J, Skalli O, Gabbiani G, Hansson GK (1985) Expression of class II transplantation antigen on vascular smooth muscle cells in human atherosclerosis. J Clin Invest 76(1):125–131

    Article  PubMed  CAS  Google Scholar 

  8. Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK (1986) Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6(2):131–138

    Article  PubMed  CAS  Google Scholar 

  9. Kovanen PT, Kaartinen M, Paavonen T (1995) Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation 92(5):1084–1088

    PubMed  CAS  Google Scholar 

  10. Ross R (1999) Atherosclerosis – an inflammatory disease. N Engl J Med 340(2):115–126

    Article  PubMed  CAS  Google Scholar 

  11. Weber C, Zernecke A, Libby P (2008) The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol 8(10):802–815

    Article  PubMed  CAS  Google Scholar 

  12. Frank PG, Pavlides S, Lisanti MP (2009) Caveolae and transcytosis in endothelial cells: role in atherosclerosis. Cell Tissue Res 335(1):41–47

    Article  PubMed  CAS  Google Scholar 

  13. Mehta D, Malik AB (2006) Signaling mechanisms regulating endothelial permeability. Physiol Rev 86(1):279–367

    Article  PubMed  CAS  Google Scholar 

  14. Pries AR, Secomb TW, Gaehtgens P (2000) The endothelial surface layer. Pflugers Arch 440(5):653–666

    Article  PubMed  CAS  Google Scholar 

  15. Davies PF, Civelek M, Fang Y, Guerraty MA, Passerini AG (2010) Endothelial heterogeneity associated with regional athero-susceptibility and adaptation to disturbed blood flow in vivo. Semin Thromb Hemost 36(3):265–275

    Article  PubMed  CAS  Google Scholar 

  16. Davies PF (2009) Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med 6(1):16–26

    Article  PubMed  CAS  Google Scholar 

  17. Bogatcheva NV, Garcia JG, Verin AD (2002) Molecular mechanisms of thrombin-induced endothelial cell permeability. Biochemistry (Mosc) 67(1):75–84

    Article  CAS  Google Scholar 

  18. Clark PR, Manes TD, Pober JS, Kluger MS (2007) Increased ICAM-1 expression causes endothelial cell leakiness, cytoskeletal reorganization and junctional alterations. J Invest Dermatol 127(4):762–774

    Article  PubMed  CAS  Google Scholar 

  19. Hamik A, Jain MK (2010) Shear stress: devil’s in the details. Blood 116(15):2625–2626

    Article  PubMed  CAS  Google Scholar 

  20. Pober JS, Min W, Bradley JR (2009) Mechanisms of endothelial dysfunction, injury, and death. Annu Rev Pathol 4:71–95

    Article  PubMed  CAS  Google Scholar 

  21. Makin AJ, Blann AD, Chung NA, Silverman SH, Lip GY (2004) Assessment of endothelial damage in atherosclerotic vascular disease by quantification of circulating endothelial cells. Relationship with von Willebrand factor and tissue factor. Eur Heart J 25(5):371–376

    Article  PubMed  CAS  Google Scholar 

  22. Gao Y, Liu C, Zhang X, Gao J, Yang C (2008) Circulating endothelial cells as potential markers of atherosclerosis. Can J Neurol Sci 35(5):638–642

    PubMed  Google Scholar 

  23. von Eckardstein A, Rohrer L (2009) Transendothelial lipoprotein transport and regulation of endothelial permeability and integrity by lipoproteins. Curr Opin Lipidol 20(3):197–205

    Article  CAS  Google Scholar 

  24. Minshall RD, Tiruppathi C, Vogel SM, Malik AB (2002) Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function. Histochem Cell Biol 117(2):105–112

    Article  PubMed  CAS  Google Scholar 

  25. Gratton JP, Bernatchez P, Sessa WC (2004) Caveolae and caveolins in the cardiovascular system. Circ Res 94(11):1408–1417

    Article  PubMed  CAS  Google Scholar 

  26. Frank PG, Woodman SE, Park DS, Lisanti MP (2003) Caveolin, caveolae, and endothelial cell function. Arterioscler Thromb Vasc Biol 23(7):1161–1168

    Article  PubMed  CAS  Google Scholar 

  27. Anderson RG (1998) The caveolae membrane system. Annu Rev Biochem 67:199–225

    Article  PubMed  CAS  Google Scholar 

  28. Stan RV, Roberts WG, Predescu D, Ihida K, Saucan L, Ghitescu L et al (1997) Immunoisolation and partial characterization of endothelial plasmalemmal vesicles (caveolae). Mol Biol Cell 8(4):595–605

    PubMed  CAS  Google Scholar 

  29. Frank PG, Pavlides S, Cheung MW, Daumer K, Lisanti MP (2008) Role of caveolin-1 in the regulation of lipoprotein metabolism. Am J Physiol Cell Physiol 295(1):C242–C248

    Article  PubMed  CAS  Google Scholar 

  30. Sun SW, Zu XY, Tuo QH, Chen LX, Lei XY, Li K et al (2010) Caveolae and caveolin-1 mediate endocytosis and transcytosis of oxidized low density lipoprotein in endothelial cells. Acta Pharmacol Sin 31(10):1336–1342

    Article  PubMed  CAS  Google Scholar 

  31. Tabas I, Williams KJ, Boren J (2007) Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116(16):1832–1844

    Article  PubMed  CAS  Google Scholar 

  32. Schwenke DC, Carew TE (1989) Initiation of atherosclerotic lesions in cholesterol-fed rabbits. II. Selective retention of LDL vs. selective increases in LDL permeability in susceptible sites of arteries. Arteriosclerosis 9(6):908–918

    Article  PubMed  CAS  Google Scholar 

  33. Buga GM, Gold ME, Fukuto JM, Ignarro LJ (1991) Shear stress-induced release of nitric oxide from endothelial cells grown on beads. Hypertension 17(2):187–193

    PubMed  CAS  Google Scholar 

  34. Davis ME, Cai H, Drummond GR, Harrison DG (2001) Shear stress regulates endothelial nitric oxide synthase expression through c-Src by divergent signaling pathways. Circ Res 89(11):1073–1080

    Article  PubMed  CAS  Google Scholar 

  35. Davis ME, Grumbach IM, Fukai T, Cutchins A, Harrison DG (2004) Shear stress regulates endothelial nitric-oxide synthase promoter activity through nuclear factor kappaB binding. J Biol Chem 279(1):163–168

    Article  PubMed  CAS  Google Scholar 

  36. Furchgott RF (1999) Endothelium-derived relaxing factor: discovery, early studies, and identification as nitric oxide. Biosci Rep 19(4):235–251

    Article  PubMed  CAS  Google Scholar 

  37. Moncada S (1994) Nitric oxide. J Hypertens Suppl 12(10):S35–S39

    PubMed  CAS  Google Scholar 

  38. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43(2):109–142

    PubMed  CAS  Google Scholar 

  39. Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88(11):4651–4655

    Article  PubMed  CAS  Google Scholar 

  40. Yates MT, Lambert LE, Whitten JP, McDonald I, Mano M, Ku G et al (1992) A protective role for nitric oxide in the oxidative modification of low density lipoproteins by mouse macrophages. FEBS Lett 309(2):135–138

    Article  PubMed  CAS  Google Scholar 

  41. Hogg N, Kalyanaraman B, Joseph J, Struck A, Parthasarathy S (1993) Inhibition of low-density lipoprotein oxidation by nitric oxide. Potential role in atherogenesis. FEBS Lett 334(2):170–174

    Article  PubMed  CAS  Google Scholar 

  42. Malo-Ranta U, Yla-Herttuala S, Metsa-Ketela T, Jaakkola O, Moilanen E, Vuorinen P et al (1994) Nitric oxide donor GEA 3162 inhibits endothelial cell-mediated oxidation of low density lipoprotein. FEBS Lett 337(2):179–183

    Article  PubMed  CAS  Google Scholar 

  43. Cardona-Sanclemente LE, Born GV (1995) Effect of inhibition of nitric oxide synthesis on the uptake of LDL and fibrinogen by arterial walls and other organs of the rat. Br J Pharmacol 114(7):1490–1494

    PubMed  CAS  Google Scholar 

  44. Won D, Zhu SN, Chen M, Teichert AM, Fish JE, Matouk CC et al (2007) Relative reduction of endothelial nitric-oxide synthase expression and transcription in atherosclerosis-prone regions of the mouse aorta and in an in vitro model of disturbed flow. Am J Pathol 171(5):1691–1704

    Article  PubMed  CAS  Google Scholar 

  45. Jessup W, Mohr D, Gieseg SP, Dean RT, Stocker R (1992) The participation of nitric oxide in cell free – and its restriction of macrophage-mediated oxidation of low-density lipoprotein. Biochim Biophys Acta 1180(1):73–82

    PubMed  CAS  Google Scholar 

  46. Kaur K, Salomon RG, O’Neil J, Hoff HF (1997) (Carboxyalkyl)pyrroles in human plasma and oxidized low-density lipoproteins. Chem Res Toxicol 10(12):1387–1396

    Article  PubMed  CAS  Google Scholar 

  47. Suarna C, Dean RT, May J, Stocker R (1995) Human atherosclerotic plaque contains both oxidized lipids and relatively large amounts of alpha-tocopherol and ascorbate. Arterioscler Thromb Vasc Biol 15(10):1616–1624

    Article  PubMed  CAS  Google Scholar 

  48. Hoppe G, Ravandi A, Herrera D, Kuksis A, Hoff HF (1997) Oxidation products of cholesteryl linoleate are resistant to hydrolysis in macrophages, form complexes with proteins, and are present in human atherosclerotic lesions. J Lipid Res 38(7):1347–1360

    PubMed  CAS  Google Scholar 

  49. Subbanagounder G, Leitinger N, Shih PT, Faull KF, Berliner JA (1999) Evidence that phospholipid oxidation products and/or platelet-activating factor play an important role in early atherogenesis: in vitro and In vivo inhibition by WEB 2086. Circ Res 85(4):311–318

    PubMed  CAS  Google Scholar 

  50. Kuhn H, Heydeck D, Hugou I, Gniwotta C (1997) In vivo action of 15-lipoxygenase in early stages of human atherogenesis. J Clin Invest 99(5):888–893

    Article  PubMed  CAS  Google Scholar 

  51. Boulanger C, Luscher TF (1990) Release of endothelin from the porcine aorta. Inhibition by endothelium-derived nitric oxide. J Clin Invest 85(2):587–590

    Article  PubMed  CAS  Google Scholar 

  52. Luscher TF, Yang Z, Tschudi M, von Segesser L, Stulz P, Boulanger C et al (1990) Interaction between endothelin-1 and endothelium-derived relaxing factor in human arteries and veins. Circ Res 66(4):1088–1094

    PubMed  CAS  Google Scholar 

  53. Ihling C, Szombathy T, Bohrmann B, Brockhaus M, Schaefer HE, Loeffler BM (2001) Coexpression of endothelin-converting enzyme-1 and endothelin-1 in different stages of human atherosclerosis. Circulation 104(8):864–869

    Article  PubMed  CAS  Google Scholar 

  54. Ivey ME, Osman N, Little PJ (2008) Endothelin-1 signalling in vascular smooth muscle: pathways controlling cellular functions associated with atherosclerosis. Atherosclerosis 199(2):237–247

    Article  PubMed  CAS  Google Scholar 

  55. Ruschitzka F, Moehrlen U, Quaschning T, Lachat M, Noll G, Shaw S et al (2000) Tissue endothelin-converting enzyme activity correlates with cardiovascular risk factors in coronary artery disease. Circulation 102(10):1086–1092

    PubMed  CAS  Google Scholar 

  56. Celebi H, Catakoglu AB, Kurtoglu H, Sener M, Hanavdelogullari R, Demiroglu C et al (2008) The relation between coronary flow rate, plasma endothelin-1 concentrations, and clinical characteristics in patients with normal coronary arteries. Cardiovasc Revasc Med 9(3):144–148

    Article  PubMed  Google Scholar 

  57. Lerman A, Edwards BS, Hallett JW, Heublein DM, Sandberg SM, Burnett JC Jr (1991) Circulating and tissue endothelin immunoreactivity in advanced atherosclerosis. N Engl J Med 325(14):997–1001

    Article  PubMed  CAS  Google Scholar 

  58. Dong F, Zhang X, Wold LE, Ren Q, Zhang Z, Ren J (2005) Endothelin-1 enhances oxidative stress, cell proliferation and reduces apoptosis in human umbilical vein endothelial cells: role of ETB receptor, NADPH oxidase and caveolin-1. Br J Pharmacol 145(3):323–333

    Article  PubMed  CAS  Google Scholar 

  59. Wedgwood S, Black SM (2005) Endothelin-1 decreases endothelial NOS expression and activity through ETA receptor-mediated generation of hydrogen peroxide. Am J Physiol Lung Cell Mol Physiol 288(3):L480–L487

    Article  PubMed  CAS  Google Scholar 

  60. De Caterina R, Libby P, Peng HB, Thannickal VJ, Rajavashisth TB, Gimbrone MA Jr et al (1995) Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 96(1):60–68

    Article  PubMed  Google Scholar 

  61. Maus U, Henning S, Wenschuh H, Mayer K, Seeger W, Lohmeyer J (2002) Role of endothelial MCP-1 in monocyte adhesion to inflamed human endothelium under physiological flow. Am J Physiol Heart Circ Physiol 283(6):H2584–H2591

    PubMed  CAS  Google Scholar 

  62. Rondaij MG, Bierings R, Kragt A, van Mourik JA, Voorberg J (2006) Dynamics and plasticity of Weibel-Palade bodies in endothelial cells. Arterioscler Thromb Vasc Biol 26(5):1002–1007

    Article  PubMed  CAS  Google Scholar 

  63. Goligorsky MS, Patschan D, Kuo MC (2009) Weibel-Palade bodies – sentinels of acute stress. Nat Rev Nephrol 5(7):423–426

    Article  PubMed  Google Scholar 

  64. Matsushita K, Morrell CN, Cambien B, Yang SX, Yamakuchi M, Bao C et al (2003) Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell 115(2):139–150

    Article  PubMed  CAS  Google Scholar 

  65. Qian Z, Gelzer-Bell R, Yang Sx SX, Cao W, Ohnishi T, Wasowska BA et al (2001) Inducible nitric oxide synthase inhibition of weibel-palade body release in cardiac transplant rejection. Circulation 104(19):2369–2375

    Article  PubMed  CAS  Google Scholar 

  66. Stassen JM, Arnout J, Deckmyn H (2004) The hemostatic system. Curr Med Chem 11(17):2245–2260

    PubMed  CAS  Google Scholar 

  67. Esmon NL, Carroll RC, Esmon CT (1983) Thrombomodulin blocks the ability of thrombin to activate platelets. J Biol Chem 258(20):12238–12242

    PubMed  CAS  Google Scholar 

  68. Herschman HR (1999) Function and regulation of prostaglandin synthase 2. Adv Exp Med Biol 469:3–8

    Article  PubMed  CAS  Google Scholar 

  69. Topper JN, Cai J, Falb D, Gimbrone MA Jr (1996) Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc Natl Acad Sci USA 93(19):10417–10422

    Article  PubMed  CAS  Google Scholar 

  70. Walshe TE, Ferguson G, Connell P, O’Brien C, Cahill PA (2005) Pulsatile flow increases the expression of eNOS, ET-1, and prostacyclin in a novel in vitro coculture model of the retinal vasculature. Invest Ophthalmol Vis Sci 46(1):375–382

    Article  PubMed  Google Scholar 

  71. Radomski MW, Palmer RM, Moncada S (1987) Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 2(8567):1057–1058

    Article  PubMed  CAS  Google Scholar 

  72. Wang W, Diamond SL (1997) Does elevated nitric oxide production enhance the release of prostacyclin from shear stressed aortic endothelial cells? Biochem Biophys Res Commun 233(3):748–751

    Article  PubMed  CAS  Google Scholar 

  73. Galbusera M, Zoja C, Donadelli R, Paris S, Morigi M, Benigni A et al (1997) Fluid shear stress modulates von Willebrand factor release from human vascular endothelium. Blood 90(4):1558–1564

    PubMed  CAS  Google Scholar 

  74. Colburn P, Buonassisi V (1982) Anti-clotting activity of endothelial cell cultures and heparan sulfate proteoglycans. Biochem Biophys Res Commun 104(1):220–227

    Article  PubMed  CAS  Google Scholar 

  75. Shimada K, Kobayashi M, Kimura S, Nishinaga M, Takeuchi K, Ozawa T (1991) Anticoagulant heparin-like glycosaminoglycans on endothelial cell surface. Jpn Circ J 55(10):1016–1021

    Article  PubMed  CAS  Google Scholar 

  76. Benedict CR, Pakala R, Willerson JT (1994) Endothelial-dependent procoagulant and anticoagulant mechanisms. Recent advances in understanding. Tex Heart Inst J 21(1):86–90

    PubMed  CAS  Google Scholar 

  77. Emeis JJ (1992) Regulation of the acute release of tissue-type plasminogen activator from the endothelium by coagulation activation products. Ann N Y Acad Sci 667:249–258

    Article  PubMed  CAS  Google Scholar 

  78. Gimbrone MA Jr, Topper JN, Nagel T, Anderson KR, Garcia-Cardena G (2000) Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann N Y Acad Sci 902:230–239

    Article  PubMed  CAS  Google Scholar 

  79. Camejo G, Hurt-Camejo E, Wiklund O, Bondjers G (1998) Association of apo B lipoproteins with arterial proteoglycans: pathological significance and molecular basis. Atherosclerosis 139(2):205–222

    Article  PubMed  CAS  Google Scholar 

  80. Kume N, Cybulsky MI, Gimbrone MA Jr (1992) Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest 90(3):1138–1144

    Article  PubMed  CAS  Google Scholar 

  81. Watson AD, Leitinger N, Navab M, Faull KF, Horkko S, Witztum JL et al (1997) Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J Biol Chem 272(21):13597–13607

    Article  PubMed  CAS  Google Scholar 

  82. Leitinger N (2003) Oxidized phospholipids as modulators of inflammation in atherosclerosis. Curr Opin Lipidol 14(5):421–430

    Article  PubMed  CAS  Google Scholar 

  83. Matsuura E, Kobayashi K, Tabuchi M, Lopez LR (2006) Oxidative modification of low-density lipoprotein and immune regulation of atherosclerosis. Prog Lipid Res 45(6):466–486

    Article  PubMed  CAS  Google Scholar 

  84. Yoshizumi M, Perrella MA, Burnett JC Jr, Lee ME (1993) Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circ Res 73(1):205–209

    PubMed  CAS  Google Scholar 

  85. Goodwin BL, Pendleton LC, Levy MM, Solomonson LP, Eichler DC (2007) Tumor necrosis factor-alpha reduces argininosuccinate synthase expression and nitric oxide production in aortic endothelial cells. Am J Physiol Heart Circ Physiol 293(2):H1115–H1121

    Article  PubMed  CAS  Google Scholar 

  86. Seidel M, Billert H, Kurpisz M (2006) Regulation of eNOS expression in HCAEC cell line treated with opioids and proinflammatory cytokines. Kardiol Pol 64(2):153–158

    PubMed  Google Scholar 

  87. Picchi A, Gao X, Belmadani S, Potter BJ, Focardi M, Chilian WM et al (2006) Tumor necrosis factor-alpha induces endothelial dysfunction in the prediabetic metabolic syndrome. Circ Res 99(1):69–77

    Article  PubMed  CAS  Google Scholar 

  88. Xia Z, Liu M, Wu Y, Sharma V, Luo T, Ouyang J et al (2006) N-acetylcysteine attenuates TNF-alpha-induced human vascular endothelial cell apoptosis and restores eNOS expression. Eur J Pharmacol 550(1–3):134–142

    Article  PubMed  CAS  Google Scholar 

  89. Petrache I, Birukova A, Ramirez SI, Garcia JG, Verin AD (2003) The role of the microtubules in tumor necrosis factor-alpha-induced endothelial cell permeability. Am J Respir Cell Mol Biol 28(5):574–581

    Article  PubMed  CAS  Google Scholar 

  90. Pan J, Xia L, McEver RP (1998) Comparison of promoters for the murine and human P-selectin genes suggests species-specific and conserved mechanisms for transcriptional regulation in endothelial cells. J Biol Chem 273(16):10058–10067

    Article  PubMed  CAS  Google Scholar 

  91. Munro JM, Pober JS, Cotran RS (1989) Tumor necrosis factor and interferon-gamma induce distinct patterns of endothelial activation and associated leukocyte accumulation in skin of Papio anubis. Am J Pathol 135(1):121–133

    PubMed  CAS  Google Scholar 

  92. Ohta H, Wada H, Niwa T, Kirii H, Iwamoto N, Fujii H et al (2005) Disruption of tumor necrosis factor-alpha gene diminishes the development of atherosclerosis in ApoE-deficient mice. Atherosclerosis 180(1):11–17

    Article  PubMed  CAS  Google Scholar 

  93. Galkina E, Ley K (2007) Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol 27(11):2292–2301

    Article  PubMed  CAS  Google Scholar 

  94. Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M et al (2001) A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 107(10):1255–1262

    Article  PubMed  CAS  Google Scholar 

  95. Jongstra-Bilen J, Haidari M, Zhu SN, Chen M, Guha D, Cybulsky MI (2006) Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis. J Exp Med 203(9):2073–2083

    Article  PubMed  CAS  Google Scholar 

  96. Tedgui A, Mallat Z (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 86(2):515–581

    Article  PubMed  CAS  Google Scholar 

  97. Santiago B, Baleux F, Palao G, Gutierrez-Canas I, Ramirez JC, Arenzana-Seisdedos F et al (2006) CXCL12 is displayed by rheumatoid endothelial cells through its basic amino-terminal motif on heparan sulfate proteoglycans. Arthritis Res Ther 8(2):R43

    Article  PubMed  CAS  Google Scholar 

  98. Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA (1996) A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 184(3):1101–1109

    Article  PubMed  CAS  Google Scholar 

  99. Sohn RH, Deming CB, Johns DC, Champion HC, Bian C, Gardner K et al (2005) Regulation of endothelial thrombomodulin expression by inflammatory cytokines is mediated by activation of nuclear factor-kappa B. Blood 105(10):3910–3917

    Article  PubMed  CAS  Google Scholar 

  100. Yu G, Rux AH, Ma P, Bdeir K, Sachais BS (2005) Endothelial expression of E-selectin is induced by the platelet-specific chemokine platelet factor 4 through LRP in an NF-kappaB-dependent manner. Blood 105(9):3545–3551

    Article  PubMed  CAS  Google Scholar 

  101. Schwartz SM, Benditt EP (1977) Aortic endothelial cell replication. I. Effects of age and hypertension in the rat. Circ Res 41(2):248–255

    PubMed  CAS  Google Scholar 

  102. Li JH, Pober JS (2005) The cathepsin B death pathway contributes to TNF plus IFN-gamma-mediated human endothelial injury. J Immunol 175(3):1858–1866

    PubMed  CAS  Google Scholar 

  103. Doukas J, Pober JS (1990) IFN-gamma enhances endothelial activation induced by tumor necrosis factor but not IL-1. J Immunol 145(6):1727–1733

    PubMed  CAS  Google Scholar 

  104. Li JH, Kluger MS, Madge LA, Zheng L, Bothwell AL, Pober JS (2002) Interferon-gamma augments CD95(APO-1/Fas) and pro-caspase-8 expression and sensitizes human vascular endothelial cells to CD95-mediated apoptosis. Am J Pathol 161(4):1485–1495

    Article  PubMed  CAS  Google Scholar 

  105. Kreuz S, Siegmund D, Scheurich P, Wajant H (2001) NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol Cell Biol 21(12):3964–3973

    Article  PubMed  CAS  Google Scholar 

  106. Schwartz SM, Stemerman MB, Benditt EP (1975) The aortic intima. II. Repair of the aortic lining after mechanical denudation. Am J Pathol 81(1):15–42

    PubMed  CAS  Google Scholar 

  107. Fujikawa LS, Wickham MG, Binder PS (1980) Wound healing in cultured corneal endothelial cells. Invest Ophthalmol Vis Sci 19(7):793–801

    PubMed  CAS  Google Scholar 

  108. Yoder MC (2010) Is endothelium the origin of endothelial progenitor cells? Arterioscler Thromb Vasc Biol 30(6):1094–1103

    Article  PubMed  CAS  Google Scholar 

  109. Zhang H, Park Y, Wu J, Chen X, Lee S, Yang J et al (2009) Role of TNF-alpha in vascular dysfunction. Clin Sci (Lond) 116(3):219–230

    Article  CAS  Google Scholar 

  110. Grisar J, Aletaha D, Steiner CW, Kapral T, Steiner S, Saemann M et al (2007) Endothelial progenitor cells in active rheumatoid arthritis: effects of tumour necrosis factor and glucocorticoid therapy. Ann Rheum Dis 66(10):1284–1288

    Article  PubMed  CAS  Google Scholar 

  111. Nilsson J, Hansson GK (2008) Autoimmunity in atherosclerosis: a protective response losing control? J Intern Med 263(5):464–478

    Article  PubMed  CAS  Google Scholar 

  112. Wick G, Knoflach M, Xu Q (2004) Autoimmune and inflammatory mechanisms in atherosclerosis. Annu Rev Immunol 22:361–403

    Article  PubMed  CAS  Google Scholar 

  113. Lamb DJ, El-Sankary W, Ferns GA (2003) Molecular mimicry in atherosclerosis: a role for heat shock proteins in immunisation. Atherosclerosis 167(2):177–185

    Article  PubMed  CAS  Google Scholar 

  114. Perschinka H, Mayr M, Millonig G, Mayerl C, van der Zee R, Morrison SG et al (2003) Cross-reactive B-cell epitopes of microbial and human heat shock protein 60/65 in atherosclerosis. Arterioscler Thromb Vasc Biol 23(6):1060–1065

    Article  PubMed  CAS  Google Scholar 

  115. Foteinos G, Xu Q (2009) Immune-mediated mechanisms of endothelial damage in atherosclerosis. Autoimmunity 42(7):627–633

    Article  PubMed  CAS  Google Scholar 

  116. Xu Q, Wick G (1996) The role of heat shock proteins in protection and pathophysiology of the arterial wall. Mol Med Today 2(9):372–379

    Article  PubMed  CAS  Google Scholar 

  117. Seitz CS, Kleindienst R, Xu Q, Wick G (1996) Coexpression of heat-shock protein 60 and intercellular-adhesion molecule-1 is related to increased adhesion of monocytes and T cells to aortic endothelium of rats in response to endotoxin. Lab Invest 74(1):241–252

    PubMed  CAS  Google Scholar 

  118. Xu Q, Schett G, Seitz CS, Hu Y, Gupta RS, Wick G (1994) Surface staining and cytotoxic activity of heat-shock protein 60 antibody in stressed aortic endothelial cells. Circ Res 75(6):1078–1085

    PubMed  CAS  Google Scholar 

  119. Amberger A, Maczek C, Jurgens G, Michaelis D, Schett G, Trieb K et al (1997) Co-expression of ICAM-1, VCAM-1, ELAM-1 and Hsp60 in human arterial and venous endothelial cells in response to cytokines and oxidized low-density lipoproteins. Cell Stress Chaperones 2(2):94–103

    Article  PubMed  CAS  Google Scholar 

  120. Pfister G, Stroh CM, Perschinka H, Kind M, Knoflach M, Hinterdorfer P et al (2005) Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy. J Cell Sci 118(Pt 8):1587–1594

    Article  PubMed  CAS  Google Scholar 

  121. Xu Q, Dietrich H, Steiner HJ, Gown AM, Schoel B, Mikuz G et al (1992) Induction of arteriosclerosis in normocholesterolemic rabbits by immunization with heat shock protein 65. Arterioscler Thromb 12(7):789–799

    Article  PubMed  CAS  Google Scholar 

  122. Xu Q, Kleindienst R, Waitz W, Dietrich H, Wick G (1993) Increased expression of heat shock protein 65 coincides with a population of infiltrating T lymphocytes in atherosclerotic lesions of rabbits specifically responding to heat shock protein 65. J Clin Invest 91(6):2693–2702

    Article  PubMed  CAS  Google Scholar 

  123. Curry AJ, Portig I, Goodall JC, Kirkpatrick PJ, Gaston JS (2000) T lymphocyte lines isolated from atheromatous plaque contain cells capable of responding to Chlamydia antigens. Clin Exp Immunol 121(2):261–269

    Article  PubMed  CAS  Google Scholar 

  124. Knoflach M, Kiechl S, Kind M, Said M, Sief R, Gisinger M et al (2003) Cardiovascular risk factors and atherosclerosis in young males: ARMY study (atherosclerosis risk-factors in male youngsters). Circulation 108(9):1064–9

    Article  PubMed  Google Scholar 

  125. Palinski W, Rosenfeld ME, Yla-Herttuala S, Gurtner GC, Socher SS, Butler SW et al (1989) Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 86(4):1372–1376

    Article  PubMed  CAS  Google Scholar 

  126. Palinski W, Witztum JL (2000) Immune responses to oxidative neoepitopes on LDL and phospholipids modulate the development of atherosclerosis. J Intern Med 247(3):371–380

    Article  PubMed  CAS  Google Scholar 

  127. Stemme S, Faber B, Holm J, Wiklund O, Witztum JL, Hansson GK (1995) T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci USA 92(9):3893–3897

    Article  PubMed  CAS  Google Scholar 

  128. Frostegard J, Wu R, Giscombe R, Holm G, Lefvert AK, Nilsson J (1992) Induction of T-cell activation by oxidized low density lipoprotein. Arterioscler Thromb 12(4):461–467

    Article  PubMed  CAS  Google Scholar 

  129. Hermansson A, Ketelhuth DF, Strodthoff D, Wurm M, Hansson EM, Nicoletti A et al (2010) Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. J Exp Med 207(5):1081–1093

    Article  PubMed  CAS  Google Scholar 

  130. Zhou X, Robertson AK, Hjerpe C, Hansson GK (2006) Adoptive transfer of CD4+ T cells reactive to modified low-density lipoprotein aggravates atherosclerosis. Arterioscler Thromb Vasc Biol 26(4):864–870

    Article  PubMed  CAS  Google Scholar 

  131. Shiao SL, McNiff JM, Pober JS (2005) Memory T cells and their costimulators in human allograft injury. J Immunol 175(8):4886–4896

    PubMed  CAS  Google Scholar 

  132. Shiao SL, Kirkiles-Smith NC, Shepherd BR, McNiff JM, Carr EJ, Pober JS (2007) Human effector memory CD4+ T cells directly recognize allogeneic endothelial cells in vitro and in vivo. J Immunol 179(7):4397–4404

    PubMed  CAS  Google Scholar 

  133. Hart DN, Fuggle SV, Williams KA, Fabre JW, Ting A, Morris PJ (1981) Localization of HLA-ABC and DR antigens in human kidney. Transplantation 31(6):428–433

    Article  PubMed  CAS  Google Scholar 

  134. Hancock WW, Kraft N, Atkins RC (1982) The immunohistochemical demonstration of major histocompatibility antigens in the human kidney using monoclonal antibodies. Pathology 14(4):409–414

    Article  PubMed  CAS  Google Scholar 

  135. Manes TD, Pober JS (2008) Antigen presentation by human microvascular endothelial cells triggers ICAM-1-dependent transendothelial protrusion by, and fractalkine-dependent transendothelial migration of, effector memory CD4+ T cells. J Immunol 180(12):8386–8392

    PubMed  CAS  Google Scholar 

  136. Manes TD, Pober JS, Kluger MS (2006) Endothelial cell-T lymphocyte interactions: IP[corrected]-10 stimulates rapid transendothelial migration of human effort but not central memory CD4+ T cells. Requirements for shear stress and adhesion molecules. Transplantation 82(1 Suppl):S9–S14

    Article  PubMed  Google Scholar 

  137. Choi JH, Do Y, Cheong C, Koh H, Boscardin SB, Oh YS et al (2009) Identification of antigen-presenting dendritic cells in mouse aorta and cardiac valves. J Exp Med 206(3):497–505

    Article  PubMed  CAS  Google Scholar 

  138. Biedermann BC, Pober JS (1999) Human vascular endothelial cells favor clonal expansion of unusual alloreactive CTL. J Immunol 162(12):7022–7030

    PubMed  CAS  Google Scholar 

  139. Dengler TJ, Pober JS (2000) Human vascular endothelial cells stimulate memory but not naive CD8+ T cells to differentiate into CTL retaining an early activation phenotype. J Immunol 164(10):5146–5155

    PubMed  CAS  Google Scholar 

  140. Xu Q, Kiechl S, Mayr M, Metzler B, Egger G, Oberhollenzer F et al (1999) Association of serum antibodies to heat-shock protein 65 with carotid atherosclerosis: clinical significance determined in a follow-up study. Circulation 100(11):1169–1174

    PubMed  CAS  Google Scholar 

  141. Xiao Q, Mandal K, Schett G, Mayr M, Wick G, Oberhollenzer F et al (2005) Association of serum-soluble heat shock protein 60 with carotid atherosclerosis: clinical significance determined in a follow-up study. Stroke 36(12):2571–2576

    Article  PubMed  CAS  Google Scholar 

  142. Schett G, Xu Q, Amberger A, van der Zee R, Recheis H, Willeit J et al (1995) Autoantibodies against heat shock protein 60 mediate endothelial cytotoxicity. J Clin Invest 96(6):2569–2577

    Article  PubMed  CAS  Google Scholar 

  143. Schett G, Metzler B, Mayr M, Amberger A, Niederwieser D, Gupta RS et al (1997) Macrophage-lysis mediated by autoantibodies to heat shock protein 65/60. Atherosclerosis 128(1):27–38

    Article  PubMed  CAS  Google Scholar 

  144. Yamakuchi M, Kirkiles-Smith NC, Ferlito M, Cameron SJ, Bao C, Fox-Talbot K et al (2007) Antibody to human leukocyte antigen triggers endothelial exocytosis. Proc Natl Acad Sci USA 104(4):1301–1306

    Article  PubMed  CAS  Google Scholar 

  145. Lucchiari N, Panajotopoulos N, Xu C, Rodrigues H, Ianhez LE, Kalil J et al (2000) Antibodies eluted from acutely rejected renal allografts bind to and activate human endothelial cells. Hum Immunol 61(5):518–527

    Article  PubMed  CAS  Google Scholar 

  146. Hosenpud JD, Shipley GD, Morris TE, Hefeneider SH, Wagner CR (1993) The modulation of human aortic endothelial cell ICAM-1 (CD-54) expression by serum containing high titers of anti-HLA antibodies. Transplantation 55(2):405–411

    PubMed  CAS  Google Scholar 

  147. Binder CJ, Shaw PX, Chang MK, Boullier A, Hartvigsen K, Horkko S et al (2005) The role of natural antibodies in atherogenesis. J Lipid Res 46(7):1353–1363

    Article  PubMed  CAS  Google Scholar 

  148. Gonzalez-Juanatey C, Llorca J, Miranda-Filloy JA, Amigo-Diaz E, Testa A, Garcia-Porrua C et al (2007) Endothelial dysfunction in psoriatic arthritis patients without clinically evident cardiovascular disease or classic atherosclerosis risk factors. Arthritis Rheum 57(2):287–293

    Article  PubMed  CAS  Google Scholar 

  149. Lockshin MD, Salmon JE, Roman MJ (2001) Atherosclerosis and lupus: a work in progress. Arthritis Rheum 44(10):2215–2217

    Article  PubMed  CAS  Google Scholar 

  150. Bruce IN, Burns RJ, Gladman DD, Urowitz MB (2000) Single photon emission computed tomography dual isotope myocardial perfusion imaging in women with systemic lupus erythematosus. I. Prevalence and distribution of abnormalities. J Rheumatol 27(10):2372–2377

    PubMed  CAS  Google Scholar 

  151. Shoenfeld Y, Gerli R, Doria A, Matsuura E, Cerinic MM, Ronda N et al (2005) Accelerated atherosclerosis in autoimmune rheumatic diseases. Circulation 112(21):3337–3347

    Article  PubMed  Google Scholar 

  152. Shoenfeld Y, Gilburd B, Abu-Shakra M, Amital H, Barzilai O, Berkun Y et al (2008) The mosaic of autoimmunity: genetic factors involved in autoimmune diseases – 2008. Isr Med Assoc J 10(1):3–7

    PubMed  Google Scholar 

  153. Avina-Zubieta JA, Choi HK, Sadatsafavi M, Etminan M, Esdaile JM, Lacaille D (2008) Risk of cardiovascular mortality in patients with rheumatoid arthritis: a meta-analysis of observational studies. Arthritis Rheum 59(12):1690–1697

    Article  PubMed  Google Scholar 

  154. Libby P (2008) Role of inflammation in atherosclerosis associated with rheumatoid arthritis. Am J Med 121(10 Suppl 1):S21–S31

    Article  PubMed  CAS  Google Scholar 

  155. Manzi S, Wasko MC (2000) Inflammation-mediated rheumatic diseases and atherosclerosis. Ann Rheum Dis 59(5):321–325

    Article  PubMed  CAS  Google Scholar 

  156. Pasceri V, Yeh ET (1999) A tale of two diseases: atherosclerosis and rheumatoid arthritis. Circulation 100(21):2124–2126

    PubMed  CAS  Google Scholar 

  157. Svenungsson E, Jensen-Urstad K, Heimburger M, Silveira A, Hamsten A, de Faire U et al (2001) Risk factors for cardiovascular disease in systemic lupus erythematosus. Circulation 104(16):1887–1893

    Article  PubMed  CAS  Google Scholar 

  158. Asanuma Y, Chung CP, Oeser A, Shintani A, Stanley E, Raggi P et al (2006) Increased concentration of proatherogenic inflammatory cytokines in systemic lupus erythematosus: relationship to cardiovascular risk factors. J Rheumatol 33(3):539–545

    PubMed  CAS  Google Scholar 

  159. Sattar N, McCarey DW, Capell H, McInnes IB (2003) Explaining how “high-grade” systemic inflammation accelerates vascular risk in rheumatoid arthritis. Circulation 108(24):2957–2963

    Article  PubMed  Google Scholar 

  160. Khovidhunkit W, Kim MS, Memon RA, Shigenaga JK, Moser AH, Feingold KR et al (2004) Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res 45(7):1169–1196

    Article  PubMed  CAS  Google Scholar 

  161. Maziere C, Auclair M, Maziere JC (1994) Tumor necrosis factor enhances low density lipoprotein oxidative modification by monocytes and endothelial cells. FEBS Lett 338(1):43–46

    Article  PubMed  CAS  Google Scholar 

  162. Lee YH, Choi SJ, Ji JD, Seo HS, Song GG (2000) Lipoprotein(a) and lipids in relation to inflammation in rheumatoid arthritis. Clin Rheumatol 19(4):324–325

    Article  PubMed  CAS  Google Scholar 

  163. Grisar J, Aletaha D, Steiner CW, Kapral T, Steiner S, Seidinger D et al (2005) Depletion of endothelial progenitor cells in the peripheral blood of patients with rheumatoid arthritis. Circulation 111(2):204–211

    Article  PubMed  Google Scholar 

  164. Avouac J, Uzan G, Kahan A, Boileau C, Allanore Y (2008) Endothelial progenitor cells and rheumatic disorders. Joint Bone Spine 75(2):131–137

    Article  PubMed  Google Scholar 

  165. McLaren JE, Ramji DP (2009) Interferon gamma: a master regulator of atherosclerosis. Cytokine Growth Factor Rev 20(2):125–135

    Article  PubMed  CAS  Google Scholar 

  166. Luster AD, Unkeless JC, Ravetch JV (1985) Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature 315(6021):672–676

    Article  PubMed  CAS  Google Scholar 

  167. Austrup F, Vestweber D, Borges E, Lohning M, Brauer R, Herz U et al (1997) P- and E-selectin mediate recruitment of T-helper-1 but not T-helper-2 cells into inflammed tissues. Nature 385(6611):81–83

    Article  PubMed  CAS  Google Scholar 

  168. Chaplin DD (2002) Cell cooperation in development of eosinophil-predominant inflammation in airways. Immunol Res 26(1–3):55–62

    Article  PubMed  CAS  Google Scholar 

  169. Bennett BL, Cruz R, Lacson RG, Manning AM (1997) Interleukin-4 suppression of tumor necrosis factor alpha-stimulated E-selectin gene transcription is mediated by STAT6 antagonism of NF-kappaB. J Biol Chem 272(15):10212–10219

    Article  PubMed  CAS  Google Scholar 

  170. Thornhill MH, Haskard DO (1990) IL-4 regulates endothelial cell activation by IL-1, tumor necrosis factor, or IFN-gamma. J Immunol 145(3):865–872

    PubMed  CAS  Google Scholar 

  171. Masinovsky B, Urdal D, Gallatin WM (1990) IL-4 acts synergistically with IL-1 beta to promote lymphocyte adhesion to microvascular endothelium by induction of vascular cell adhesion molecule-1. J Immunol 145(9):2886–2895

    PubMed  CAS  Google Scholar 

  172. Blease K, Seybold J, Adcock IM, Hellewell PG, Burke-Gaffney A (1998) Interleukin-4 and lipopolysaccharide synergize to induce vascular cell adhesion molecule-1 expression in human lung microvascular endothelial cells. Am J Respir Cell Mol Biol 18(5):620–630

    PubMed  CAS  Google Scholar 

  173. Aukrust P, Otterdal K, Yndestad A, Sandberg WJ, Smith C, Ueland T et al (2008) The complex role of T-cell-based immunity in atherosclerosis. Curr Atheroscler Rep 10(3):236–243

    Article  PubMed  CAS  Google Scholar 

  174. Binder CJ, Hartvigsen K, Chang MK, Miller M, Broide D, Palinski W et al (2004) IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J Clin Invest 114(3):427–437

    PubMed  CAS  Google Scholar 

  175. Das J, Ren G, Zhang L, Roberts AI, Zhao X, Bothwell AL et al (2009) Transforming growth factor beta is dispensable for the molecular orchestration of Th17 cell differentiation. J Exp Med 206(11):2407–2416

    Article  PubMed  CAS  Google Scholar 

  176. Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol 28:445–489

    Article  PubMed  CAS  Google Scholar 

  177. Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4 + CD25+ T cell-mediated suppression by dendritic cells. Science 299(5609):1033–1036

    Article  PubMed  CAS  Google Scholar 

  178. Levings MK, Sangregorio R, Galbiati F, Squadrone S, de Waal MR, Roncarolo MG (2001) IFN-alpha and IL-10 induce the differentiation of human type 1 T regulatory cells. J Immunol 166(9):5530–5539

    PubMed  CAS  Google Scholar 

  179. Warner SJ, Auger KR, Libby P (1987) Interleukin 1 induces interleukin 1. II. Recombinant human interleukin 1 induces interleukin 1 production by adult human vascular endothelial cells. J Immunol 139(6):1911–1917

    PubMed  CAS  Google Scholar 

  180. Rao DA, Tracey KJ, Pober JS (2007) IL-1alpha and IL-1beta are endogenous mediators linking cell injury to the adaptive alloimmune response. J Immunol 179(10):6536–6546

    PubMed  CAS  Google Scholar 

  181. Dienz O, Rincon M (2009) The effects of IL-6 on CD4 T cell responses. Clin Immunol 130(1):27–33

    Article  PubMed  CAS  Google Scholar 

  182. Nishimoto N, Kishimoto T (2006) Interleukin 6: from bench to bedside. Nat Clin Pract Rheumatol 2(11):619–626

    Article  PubMed  CAS  Google Scholar 

  183. Rochman I, Paul WE, Ben-Sasson SZ (2005) IL-6 increases primed cell expansion and survival. J Immunol 174(8):4761–4767

    PubMed  CAS  Google Scholar 

  184. McLoughlin RM, Jenkins BJ, Grail D, Williams AS, Fielding CA, Parker CR et al (2005) IL-6 trans-signaling via STAT3 directs T cell infiltration in acute inflammation. Proc Natl Acad Sci USA 102(27):9589–9594

    Article  PubMed  CAS  Google Scholar 

  185. Vardam TD, Zhou L, Appenheimer MM, Chen Q, Wang WC, Baumann H et al (2007) Regulation of a lymphocyte-endothelial-IL-6 trans-signaling axis by fever-range thermal stress: hot spot of immune surveillance. Cytokine 39(1):84–96

    Article  PubMed  CAS  Google Scholar 

  186. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441(7090):235–238

    Article  PubMed  CAS  Google Scholar 

  187. Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 Cells. Annu Rev Immunol 27:485–517

    Article  PubMed  CAS  Google Scholar 

  188. Beriou G, Costantino CM, Ashley CW, Yang L, Kuchroo VK, Baecher-Allan C et al (2009) IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood 113(18):4240–4249

    Article  PubMed  CAS  Google Scholar 

  189. Koenen HJ, Smeets RL, Vink PM, van Rijssen E, Boots AM, Joosten I (2008) Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood 112(6):2340–2352

    Article  PubMed  CAS  Google Scholar 

  190. Korn T, Mitsdoerffer M, Croxford AL, Awasthi A, Dardalhon VA, Galileos G et al (2008) IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+ regulatory T cells. Proc Natl Acad Sci USA 105(47):18460–18465

    Article  PubMed  CAS  Google Scholar 

  191. Cheng X, Yu X, Ding YJ, Fu QQ, Xie JJ, Tang TT et al (2008) The Th17/Treg imbalance in patients with acute coronary syndrome. Clin Immunol 127(1):89–97

    Article  PubMed  CAS  Google Scholar 

  192. Xie JJ, Wang J, Tang TT, Chen J, Gao XL, Yuan J et al (2010) The Th17/Treg functional imbalance during atherogenesis in ApoE(−/−) mice. Cytokine 49(2):185–193

    Article  PubMed  CAS  Google Scholar 

  193. de Boer OJ, van der Meer JJ, Teeling P, van der Loos CM, Idu MM, van Maldegem F et al (2010) Differential expression of interleukin-17 family cytokines in intact and complicated human atherosclerotic plaques. J Pathol 220(4):499–508

    PubMed  Google Scholar 

  194. Erbel C, Chen L, Bea F, Wangler S, Celik S, Lasitschka F et al (2009) Inhibition of IL-17A attenuates atherosclerotic lesion development in apoE-deficient mice. J Immunol 183(12):8167–8175

    Article  PubMed  CAS  Google Scholar 

  195. Smith E, Prasad KM, Butcher M, Dobrian A, Kolls JK, Ley K et al (2010) Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation 121(15):1746–1755

    Article  PubMed  CAS  Google Scholar 

  196. Eid RE, Rao DA, Zhou J, Lo SF, Ranjbaran H, Gallo A et al (2009) Interleukin-17 and interferon-gamma are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells. Circulation 119(10):1424–1432

    Article  PubMed  CAS  Google Scholar 

  197. Tedgui A, Mallat Z (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 86(2):515–81

    Article  PubMed  CAS  Google Scholar 

  198. Mallat Z, Gojova A, Marchiol-Fournigault C, Esposito B, Kamate C, Merval R et al (2001) Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ Res 89(10):930–934

    Article  PubMed  CAS  Google Scholar 

  199. Biedermann BC, Pober JS (1998) Human endothelial cells induce and regulate cytolytic T cell differentiation. J Immunol 161(9):4679–4687

    PubMed  CAS  Google Scholar 

  200. Jin HT, Anderson AC, Tan WG, West EE, Ha SJ, Araki K et al (2010) Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc Natl Acad Sci USA 107(33):14733–14738

    Article  PubMed  CAS  Google Scholar 

  201. Nakajima T, Schulte S, Warrington KJ, Kopecky SL, Frye RL, Goronzy JJ et al (2002) T-cell-mediated lysis of endothelial cells in acute coronary syndromes. Circulation 105(5):570–575

    Article  PubMed  CAS  Google Scholar 

  202. Li JH, Kirkiles-Smith NC, McNiff JM, Pober JS (2003) TRAIL induces apoptosis and inflammatory gene expression in human endothelial cells. J Immunol 171(3):1526–1533

    PubMed  CAS  Google Scholar 

  203. Bai Y, Ahmad U, Wang Y, Li JH, Choy JC, Kim RW et al (2008) Interferon-gamma induces X-linked inhibitor of apoptosis-associated factor-1 and Noxa expression and potentiates human vascular smooth muscle cell apoptosis by STAT3 activation. J Biol Chem 283(11):6832–6842

    Article  PubMed  CAS  Google Scholar 

  204. Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN et al (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 25(10):2054–2061

    Article  PubMed  CAS  Google Scholar 

  205. Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK et al (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 349(24):2316–2325

    Article  PubMed  CAS  Google Scholar 

  206. Barger AC, Beeuwkes R III, Lainey LL, Silverman KJ (1984) Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med 310(3):175–177

    Article  PubMed  CAS  Google Scholar 

  207. Khurana R, Simons M, Martin JF, Zachary IC (2005) Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation 112(12):1813–1824

    Article  PubMed  Google Scholar 

  208. Khurana R, Zhuang Z, Bhardwaj S, Murakami M, De Muinick E, Yla-Herttuala S et al (2004) Angiogenesis-dependent and independent phases of intimal hyperplasia. Circulation 110(16):2436–2443

    Article  PubMed  Google Scholar 

  209. Langheinrich AC, Michniewicz A, Bohle RM, Ritman EL (2007) Vasa vasorum neovascularization and lesion distribution among different vascular beds in ApoE−/−/LDL−/− double knockout mice. Atherosclerosis 191(1):73–81

    Article  PubMed  CAS  Google Scholar 

  210. Langheinrich AC, Sedding DG, Kampschulte M, Moritz R, Wilhelm J, Haberbosch WG et al (2009) 3-Deazaadenosine inhibits vasa vasorum neovascularization in aortas of ApoE(−/−)/LDL(−/−) double knockout mice. Atherosclerosis 202(1):103–110

    Article  PubMed  CAS  Google Scholar 

  211. Galkina E, Ley K (2009) Immune and inflammatory mechanisms of atherosclerosis (*). Annu Rev Immunol 27:165–197

    Article  PubMed  CAS  Google Scholar 

  212. Kaartinen M, Penttila A, Kovanen PT (1994) Accumulation of activated mast cells in the shoulder region of human coronary atheroma, the predilection site of atheromatous rupture. Circulation 90(4):1669–1678

    PubMed  CAS  Google Scholar 

  213. Costa C, Incio J, Soares R (2007) Angiogenesis and chronic inflammation: cause or consequence? Angiogenesis 10(3):149–166

    Article  PubMed  Google Scholar 

  214. Rafii DC, Psaila B, Butler J, Jin DK, Lyden D (2008) Regulation of vasculogenesis by platelet-mediated recruitment of bone marrow-derived cells. Arterioscler Thromb Vasc Biol 28(2):217–222

    Article  PubMed  CAS  Google Scholar 

  215. Leroyer AS, Rautou PE, Silvestre JS, Castier Y, Leseche G, Devue C et al (2008) CD40 ligand + microparticles from human atherosclerotic plaques stimulate endothelial proliferation and angiogenesis a potential mechanism for intraplaque neovascularization. J Am Coll Cardiol 52(16):1302–1311

    Article  PubMed  CAS  Google Scholar 

  216. Moulton KS, Vakili K, Zurakowski D, Soliman M, Butterfield C, Sylvin E et al (2003) Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci USA 100(8):4736–4741

    Article  PubMed  CAS  Google Scholar 

  217. Moulton KS, Heller E, Konerding MA, Flynn E, Palinski W, Folkman J (1999) Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Circulation 99(13):1726–1732

    PubMed  CAS  Google Scholar 

  218. Nakano T, Nakashima Y, Yonemitsu Y, Sumiyoshi S, Chen YX, Akishima Y et al (2005) Angiogenesis and lymphangiogenesis and expression of lymphangiogenic factors in the atherosclerotic intima of human coronary arteries. Hum Pathol 36(4):330–340

    Article  PubMed  CAS  Google Scholar 

  219. Sugiyama S, Kugiyama K, Aikawa M, Nakamura S, Ogawa H, Libby P (2004) Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression: involvement of myeloperoxidase-mediated oxidant in plaque erosion and thrombogenesis. Arterioscler Thromb Vasc Biol 24(7):1309–1314

    Article  PubMed  CAS  Google Scholar 

  220. Sugiyama S, Okada Y, Sukhova GK, Virmani R, Heinecke JW, Libby P (2001) Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am J Pathol 158(3):879–891

    Article  PubMed  CAS  Google Scholar 

  221. Daugherty A, Dunn JL, Rateri DL, Heinecke JW (1994) Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest 94(1):437–444

    Article  PubMed  CAS  Google Scholar 

  222. Baldus S, Heeschen C, Meinertz T, Zeiher AM, Eiserich JP, Munzel T et al (2003) Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation 108(12):1440–1445

    Article  PubMed  CAS  Google Scholar 

  223. Brennan ML, Penn MS, Van LF, Nambi V, Shishehbor MH, Aviles RJ et al (2003) Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med 349(17):1595–1604

    Article  PubMed  CAS  Google Scholar 

  224. Meuwese MC, Stroes ES, Hazen SL, van Miert JN, Kuivenhoven JA, Schaub RG et al (2007) Serum myeloperoxidase levels are associated with the future risk of coronary artery disease in apparently healthy individuals: the EPIC-Norfolk Prospective Population Study. J Am Coll Cardiol 50(2):159–165

    Article  PubMed  CAS  Google Scholar 

  225. Rajavashisth TB, Liao JK, Galis ZS, Tripathi S, Laufs U, Tripathi J et al (1999) Inflammatory cytokines and oxidized low density lipoproteins increase endothelial cell expression of membrane type 1-matrix metalloproteinase. J Biol Chem 274(17):11924–11929

    Article  PubMed  CAS  Google Scholar 

  226. Galis ZS, Muszynski M, Sukhova GK, Simon-Morrissey E, Libby P (1995) Enhanced expression of vascular matrix metalloproteinases induced in vitro by cytokines and in regions of human atherosclerotic lesions. Ann N Y Acad Sci 748:501–507

    Article  PubMed  CAS  Google Scholar 

  227. Amento EP, Ehsani N, Palmer H, Libby P (1991) Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb 11(5):1223–1230

    Article  PubMed  CAS  Google Scholar 

  228. Davies MJ (1996) Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995. Circulation 94(8):2013–2020

    PubMed  CAS  Google Scholar 

  229. Grignani G, Maiolo A (2000) Cytokines and hemostasis. Haematologica 85(9):967–972

    PubMed  CAS  Google Scholar 

  230. Bombeli T, Karsan A, Tait JF, Harlan JM (1997) Apoptotic vascular endothelial cells become procoagulant. Blood 89(7):2429–2442

    PubMed  CAS  Google Scholar 

  231. Kockx MM, Cromheeke KM, Knaapen MW, Bosmans JM, De Meyer GR, Herman AG et al (2003) Phagocytosis and macrophage activation associated with hemorrhagic microvessels in human atherosclerosis. Arterioscler Thromb Vasc Biol 23(3):440–446

    Article  PubMed  CAS  Google Scholar 

  232. Levy AP, Moreno PR (2006) Intraplaque hemorrhage. Curr Mol Med 6(5):479–488

    Article  PubMed  CAS  Google Scholar 

  233. Schwartz CJ, Mitchell JR (1962) Cellular infiltration of the human arterial adventitia associated with atheromatous plaques. Circulation 26:73–78

    PubMed  CAS  Google Scholar 

  234. Higuchi ML, Gutierrez PS, Bezerra HG, Palomino SA, Aiello VD, Silvestre JM et al (2002) Comparison between adventitial and intimal inflammation of ruptured and nonruptured atherosclerotic plaques in human coronary arteries. Arq Bras Cardiol 79(1):20–24

    Article  PubMed  Google Scholar 

  235. Watanabe M, Sangawa A, Sasaki Y, Yamashita M, Tanaka-Shintani M, Shintaku M et al (2007) Distribution of inflammatory cells in adventitia changed with advancing atherosclerosis of human coronary artery. J Atheroscler Thromb 14(6):325–331

    Article  PubMed  Google Scholar 

  236. Wilcox JN, Scott NA (1996) Potential role of the adventitia in arteritis and atherosclerosis. Int J Cardiol 54(Suppl):S21–S35

    Article  PubMed  Google Scholar 

  237. Cowan DB, Langille BL (1996) Cellular and molecular biology of vascular remodeling. Curr Opin Lipidol 7(2):94–100

    Article  PubMed  CAS  Google Scholar 

  238. Zhou J, Tang PC, Qin L, Gayed PM, Li W, Skokos EA et al (2010) CXCR3-dependent accumulation and activation of perivascular macrophages is necessary for homeostatic arterial remodeling to hemodynamic stresses. J Exp Med 207(9):1951–1966

    Article  PubMed  CAS  Google Scholar 

  239. Herity NA, Ward MR, Lo S, Yeung AC (1999) Review: clinical aspects of vascular remodeling. J Cardiovasc Electrophysiol 10(7):1016–1024

    Article  PubMed  CAS  Google Scholar 

  240. Pasterkamp G, Borst C, Post MJ, Mali WP, Wensing PJ, Gussenhoven EJ et al (1996) Atherosclerotic arterial remodeling in the superficial femoral artery. Individual variation in local compensatory enlargement response. Circulation 93(10):1818–1825

    PubMed  CAS  Google Scholar 

  241. Mintz GS, Kent KM, Pichard AD, Satler LF, Popma JJ, Leon MB (1997) Contribution of inadequate arterial remodeling to the development of focal coronary artery stenoses. An intravascular ultrasound study. Circulation 95(7):1791–1798

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan S. Pober .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Fogal, B., Pober, J.S. (2012). Vascular Endothelial Cells as Immunological Targets in Atheroscleroisis. In: Wick, G., Grundtman, C. (eds) Inflammation and Atherosclerosis. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0338-8_6

Download citation

Publish with us

Policies and ethics