Skip to main content

Intra-Aortic Hematopoietic Cells

  • Chapter
  • First Online:
Inflammation and Atherosclerosis

Abstract

Life-long function of the blood-forming system depends on a pool of self-renewable Hematopoietic Stem Cells (HSCs). During ontogeny, these cells seed the rudiments of hematopoietic and lymphoid organs, whether they are mesodermal (bone marrow, spleen, milky spots of the omentum, secondary lymphoid organs) or endodermal/mesodermal (thymus, bursa of Fabricius, fetal liver). The only exception is the yolk sac, which produces its own progenitors and stem cells. To grasp how the adult HSCs pool is maintained, it is important to understand how HSCs become committed and segregated during development. It was once thought that these cells emerged once for all, early in ontogeny, in the yolk sac (or, in amphibians, in the yolk sac-equivalent, the ventral blood island) [1]. However it was known that the cellular and molecular features of blood cells, notably red cells, changed along the course of development, a fact that might indicate either an environmental influence of the differentiation site or intrinsic properties of successive generations of HSCs. An experimental model, consisting of a quail embryo developing on a chicken yolk sac, then disclosed the existence of an intra-embryonic origin source of HSCs [2]. In these chimeras the definitive hematopoietic organs were colonized by HSCs from the embryo and hemoglobin switches could be related to the emergence of these intra-embryonic HSCs [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moore MA, Metcalf D (1970) Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br J Haematol 18(3):279–296

    Article  PubMed  CAS  Google Scholar 

  2. Dieterlen-Lièvre F (1975) On the origin of haemopoietic stem cells in the avian embryo: an experimental approach. J Embryol Exp Morphol 33(3):607–619

    PubMed  Google Scholar 

  3. Beaupain D, Martin C, Dieterlen-Lièvre F (1979) Are developmental hemoglobin changes related to the origin of stem cells and site of erythropoiesis? Blood 53(2):212–225

    PubMed  CAS  Google Scholar 

  4. Dieterlen-Lièvre F, Pouget C, Bollerot K, Jaffredo T (2006) Are intra-aortic hemopoietic cells derived from endothelial cells during ontogeny? Trends Cardiovasc Med 16(4):128–139

    Article  PubMed  Google Scholar 

  5. Lacaud G, Keller G, Kouskoff V (2004) Tracking mesoderm formation and specification to the hemangioblast in vitro. Trends Cardiovasc Med 14(8):314–317

    Article  PubMed  Google Scholar 

  6. Martin C (1972) Technique d’explantation in ovo de blastodermes d’embryons d’oiseaux. C R Seances Soc Biol (Paris) 166:283–285

    CAS  Google Scholar 

  7. Le Douarin N (1969) Details of the interphase nucleus in Japanese quail (Coturnix coturnix japonica). Bull Biol Fr Belg 103(3):435–452

    PubMed  Google Scholar 

  8. Pardanaud L, Altmann C, Kitos P, Dieterlen-Lièvre F, Buck CA (1987) Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 100(2):339–349

    PubMed  CAS  Google Scholar 

  9. Péault BM, Thiery JP, Le Douarin NM (1983) Surface marker for hemopoietic and endothelial cell lineages in quail that is defined by a monoclonal antibody. Proc Natl Acad Sci USA 80(10):2976–2980

    Article  PubMed  Google Scholar 

  10. Lassila O, Eskola J, Toivanen P, Dieterlen-Lièvre F (1980) Lymphoid stem cells in the intraembryonic mesenchyme of the chicken. Scand J Immunol 11(4):445–448

    Article  PubMed  CAS  Google Scholar 

  11. Lassila O, Eskola J, Toivanen P, Martin C, Dieterlen-Lièvre F (1978) The origin of lymphoid stem cells studied in chick yolk sac-embryo chimaeras. Nature 272(5651):353–354

    Article  PubMed  CAS  Google Scholar 

  12. Cormier F, de Paz P, Dieterlen-Lièvre F (1986) In vitro detection of cells with monocytic potentiality in the wall of the chick embryo aorta. Dev Biol 118(1):167–175

    Article  PubMed  CAS  Google Scholar 

  13. Cormier F, Dieterlen-Lièvre F (1988) The wall of the chick embryo aorta harbours M-CFC, G-CFC, GM-CFC and BFU-E. Development 102(2):279–285

    PubMed  CAS  Google Scholar 

  14. Cormier F (1993) Avian pluripotent haemopoietic progenitor cells: detection and enrichment from the para-aortic region of the early embryo. J Cell Sci 105(Pt 3):661–666

    PubMed  Google Scholar 

  15. Turpen JB, Knudson CM, Hoefen PS (1981) The early ontogeny of hematopoietic cells studied by grafting cytogenetically labeled tissue anlagen: localization of a prospective stem cell compartment. Dev Biol 85(1):99–112

    Article  PubMed  CAS  Google Scholar 

  16. Kau CL, Turpen JB (1983) Dual contribution of embryonic ventral blood island and dorsal lateral plate mesoderm during ontogeny of hemopoietic cells in Xenopus laevis. J Immunol 131:2262–2266

    PubMed  CAS  Google Scholar 

  17. Maeno M, Tochainai S, Katagiri C (1985) Differential participation of ventral and dorsolateral mesoderms in the hemopoiesis of Xenopus, as revealed in diploid-triploid or interspecific chimeras. Dev Biol 110:503–508

    Article  PubMed  CAS  Google Scholar 

  18. Ciau-Uitz A, Walmsley M, Patient R (2000) Distinct origins of adult and embryonic blood in Xenopus. Cell 102(6):787–796

    Article  PubMed  CAS  Google Scholar 

  19. Godin IE, Garcia-Porrero JA, Coutinho A, Dieterlen-Lièvre F, Marcos MA (1993) Para-aortic splanchnopleura from early mouse embryos contains B1a cell progenitors. Nature 364(6432):67–70

    Article  PubMed  CAS  Google Scholar 

  20. Medvinsky AL, Samoylina NL, Muller AM, Dzierzak EA (1993) An early pre-liver intraembryonic source of CFU-S in the developing mouse. Nature 364(6432):64–67

    Article  PubMed  CAS  Google Scholar 

  21. Muller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E (1994) Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1(4):291–301

    Article  PubMed  CAS  Google Scholar 

  22. Godin I, Dieterlen-Lièvre F, Cumano A (1995) Emergence of multipotent hemopoietic cells in the yolk sac and paraaortic splanchnopleura in mouse embryos, beginning at 8.5 days postcoitus. Proc Natl Acad Sci USA 92(3):773–777

    Article  PubMed  CAS  Google Scholar 

  23. Medvinsky A, Dzierzak E (1996) Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86(6):897–906

    Article  PubMed  CAS  Google Scholar 

  24. Cumano A, Dieterlen-Lièvre F, Godin I (1996) Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell 86(6):907–916

    Article  PubMed  CAS  Google Scholar 

  25. Cumano A, Ferraz JC, Klaine M, Di Santo JP, Godin I (2001) Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation, provide long-term multilineage reconstitution. Immunity 15(3):477–485

    Article  PubMed  CAS  Google Scholar 

  26. Tavian M, Robin C, Coulombel L, Péault B (2001) The human embryo, but not its yolk sac, generates lympho-myeloid stem cells: mapping multipotent hematopoietic cell fate in intraembryonic mesoderm. Immunity 15(3):487–495

    Article  PubMed  CAS  Google Scholar 

  27. Cuadros MA, Coltey P, Carmen Nieto M, Martin C (1992) Demonstration of a phagocytic cell system belonging to the hemopoietic lineage and originating from the yolk sac in the early avian embryo. Development 115(1):157–168

    PubMed  CAS  Google Scholar 

  28. Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117(2):145–152

    Article  PubMed  CAS  Google Scholar 

  29. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845

    Article  PubMed  CAS  Google Scholar 

  30. de Bruijn MF, Speck NA, Peeters MC, Dzierzak E (2000) Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J 19(11):2465–2474

    Article  PubMed  Google Scholar 

  31. Kumaravelu P, Hook L, Morrison AM, Ure J, Zhao S, Zuyev S et al (2002) Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 129(21):4891–4899

    PubMed  CAS  Google Scholar 

  32. Christensen JL, Wright DE, Wagers AJ, Weissman IL (2004) Circulation and chemotaxis of fetal hematopoietic stem cells. PLoS Biol 2(3):E75

    Article  PubMed  Google Scholar 

  33. Gothert JR, Gustin SE, Hall MA, Green AR, Gottgens B, Izon DJ et al (2005) In vivo fate-tracing studies using the Scl stem cell enhancer: embryonic hematopoietic stem cells significantly contribute to adult hematopoiesis. Blood 105(7):2724–2732

    Article  PubMed  Google Scholar 

  34. Dzierzak E, Medvinsky A, de Bruijn M (1998) Qualitative and quantitative aspects of haematopoietic cell development in the mammalian embryo. Immunol Today 19(5):228–236

    Article  PubMed  CAS  Google Scholar 

  35. Marshall CJ, Thrasher AJ (2001) The embryonic origins of human hematopoiesis. Br J Haematol 112:838–850

    Article  PubMed  CAS  Google Scholar 

  36. Palis J, Yoder MC (2001) Yolk-sac hematopoiesis: the first blood cells of mouse and man. Exp Hematol 29(8):927–936

    Article  PubMed  CAS  Google Scholar 

  37. Godin I, Cumano A (2002) The hare and the tortoise: an embryonic haematopoietic race. Nat Rev Immunol 2(8):593–604

    PubMed  CAS  Google Scholar 

  38. Yoder MC (2004) Generation of HSCs in the embryo and assays to detect them. Oncogene 23(43):7161–7163

    Article  PubMed  CAS  Google Scholar 

  39. Sugiyama D, Arai K, Tsuji K (2005) Definitive hematopoiesis from acetyl LDL incorporating endothelial cells in the mouse embryo. Stem Cells Dev 14(6):687–696

    Article  PubMed  CAS  Google Scholar 

  40. Yokomizo T, Dzierzak E (2010) Three-dimensional cartography of hematopoietic clusters in the vasculature of whole mouse embryos. Development 137(21):3651–3661

    Article  PubMed  CAS  Google Scholar 

  41. Lux CT, Yoshimoto M, McGrath K, Conway SJ, Palis J, Yoder MC (2008) All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac. Blood 111(7):3435–3438

    Article  PubMed  CAS  Google Scholar 

  42. Ghiaur G, Ferkowicz MJ, Milsom MD, Bailey J, Witte D, Cancelas JA et al (2008) Rac1 is essential for intraembryonic hematopoiesis and for the initial seeding of fetal liver with definitive hematopoietic progenitor cells. Blood 111(7):3313–3321

    Article  PubMed  CAS  Google Scholar 

  43. Adamo L, Naveiras O, Wenzel PL, McKinney-Freeman S, Mack PJ, Gracia-Sancho J et al (2009) Biomechanical forces promote embryonic haematopoiesis. Nature 459(7250):1131–1135

    Article  PubMed  CAS  Google Scholar 

  44. North TE, Goessling W, Peeters M, Li P, Ceol C, Lord AM et al (2009) Hematopoietic stem cell development is dependent on blood flow. Cell 137(4):736–748

    Article  PubMed  CAS  Google Scholar 

  45. Eichmann A, Marcelle C, Breant C, Le Douarin NM (1993) Two molecules related to the VEGF receptor are expressed in early endothelial cells during avian embryonic development. Mech Dev 42(1–2):33–48

    Article  PubMed  CAS  Google Scholar 

  46. Yamaguchi TP, Dumont DJ, Conlon RA, Breitman ML, Rossant J (1993) flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 118(2):489–498

    PubMed  CAS  Google Scholar 

  47. Dumont DJ, Fong GH, Puri MC, Gradwohl G, Alitalo K, Breitman ML (1995) Vascularization of the mouse embryo: a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev Dyn 203(1):80–92

    Article  PubMed  CAS  Google Scholar 

  48. Shalaby F, Ho J, Stanford WL, Fischer K-D, Schuh A, Schwartz L et al (1997) A requirement for flk-1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89:981–990

    Article  PubMed  CAS  Google Scholar 

  49. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu X-F, Breitman ML et al (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66

    Article  PubMed  CAS  Google Scholar 

  50. Eichmann A, Corbel C, Nataf V, Vaigot P, Breant C, Le Douarin NM (1997) Ligand-dependent development of the endothelial and hemopoietic lineages from embryonic mesodermal cells expressing vascular endothelial growth factor receptor 2. Proc Natl Acad Sci USA 94(10):5141–5146

    Article  PubMed  CAS  Google Scholar 

  51. Jaffredo T, Gautier R, Eichmann A, Dieterlen-Lièvre F (1998) Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development 125(22):4575–4583

    PubMed  CAS  Google Scholar 

  52. Pardanaud L, Luton D, Prigent M, Bourcheix L-M, Catala M, Dieterlen-Lièvre F (1996) Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 122:1363–1371

    PubMed  CAS  Google Scholar 

  53. Pouget C, Gautier R, Teillet MA, Jaffredo T (2006) Somite-derived cells replace ventral aortic hemangioblasts and provide aortic smooth muscle cells of the trunk. Development 133(6):1013–1022

    Article  PubMed  CAS  Google Scholar 

  54. Zovein AC, Hofmann JJ, Lynch M, French WJ, Turlo KA, Yang Y et al (2008) Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 3(6):625–636

    Article  PubMed  CAS  Google Scholar 

  55. Lancrin C, Sroczynska P, Stephenson C, Allen T, Kouskoff V, Lacaud G (2009) The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 457(7231):892–895

    Article  PubMed  CAS  Google Scholar 

  56. Dieterlen-Lièvre F, Jaffredo T (2009) Decoding the hemogenic endothelium in mammals. Cell Stem Cell 4(3):189–190

    Article  PubMed  Google Scholar 

  57. Eilken HM, Nishikawa S, Schroeder T (2009) Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature 457(7231):896–900

    Article  PubMed  CAS  Google Scholar 

  58. Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DY, Traver D (2010) Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464(7285):108–111

    Article  PubMed  CAS  Google Scholar 

  59. Kissa K, Herbomel P (2010) Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464(7285):112–115

    Article  PubMed  CAS  Google Scholar 

  60. Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA (2009) Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457(7231):887–891

    Article  PubMed  CAS  Google Scholar 

  61. Jaffredo T, Gautier R, Brajeul V, Dieterlen-Lièvre F (2000) Tracing the progeny of the aortic hemangioblast in the avian embryo. Dev Biol 224(2):204–214

    Article  PubMed  CAS  Google Scholar 

  62. Boisset JC, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C (2010) In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464(7285):116–120

    Article  PubMed  CAS  Google Scholar 

  63. Weissman IL, Papaioannou VE, Gardner RL (1977) Fetal hematopoietic origins of the adult hematolymphoid system. Cold Spring Harbor 5:33–43

    Google Scholar 

  64. Samokhvalov IM, Samokhvalova NI, Nishikawa S (2007) Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature 446(7139):1056–1061

    Article  PubMed  CAS  Google Scholar 

  65. Caprioli A, Jaffredo T, Gautier R, Dubourg C, Dieterlen-Lièvre F (1998) Blood-borne seeding by hematopoietic and endothelial precursors from the allantois. Proc Natl Acad Sci USA 95:1641–1646

    Article  PubMed  CAS  Google Scholar 

  66. Caprioli A, Minko K, Drevon C, Eichmann A, Dieterlen-Lièvre F, Jaffredo T (2001) Hemangioblast commitment in the avian allantois: cellular and molecular aspects. Dev Biol 238(1):64–78

    Article  PubMed  CAS  Google Scholar 

  67. Wilkinson RN, Pouget C, Gering M, Russell AJ, Davies SG, Kimelman D et al (2009) Hedgehog and Bmp polarize hematopoietic stem cell emergence in the zebrafish dorsal aorta. Dev Cell 16(6):909–916

    Article  PubMed  CAS  Google Scholar 

  68. Melchers F (1979) Murine embryonic B lymphocyte development in the placenta. Nature 277(5693):219–221

    Article  PubMed  CAS  Google Scholar 

  69. Alvarez-Silva M, Belo-Diabangouaya P, Salaun J, Dieterlen-Lièvre F (2003) Mouse placenta is a major hematopoietic organ. Development 130(22):5437–5444

    Article  PubMed  CAS  Google Scholar 

  70. Gekas C, Dieterlen-Lièvre F, Orkin SH, Mikkola HK (2005) The placenta is a niche for hematopoietic stem cells. Dev Cell 8(3):365–375

    Article  PubMed  CAS  Google Scholar 

  71. Ottersbach K, Dzierzak E (2005) The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev Cell 8(3):377–387

    Article  PubMed  CAS  Google Scholar 

  72. Mikkola HK, Orkin SH (2006) The journey of developing hematopoietic stem cells. Development 133(19):3733–3744

    Article  PubMed  CAS  Google Scholar 

  73. Sasaki T, Mizuochi C, Horio Y, Nakao K, Akashi K, Sugiyama D (2010) Regulation of hematopoietic cell clusters in the placental niche through SCF/Kit signaling in embryonic mouse. Development 137(23):3941–3952

    Article  PubMed  CAS  Google Scholar 

  74. Zeigler BM, Sugiyama D, Chen M, Guo Y, Downs KM, Speck NA (2006) The allantois and chorion, when isolated before circulation or chorio-allantoic fusion, have hematopoietic potential. Development 133(21):4183–4192

    Article  PubMed  CAS  Google Scholar 

  75. Corbel C, Salaun J, Belo-Diabangouaya P, Dieterlen-Lièvre F (2007) Hematopoietic potential of the pre-fusion allantois. Dev Biol 301(2):478–488

    Article  PubMed  CAS  Google Scholar 

  76. Tavian M, Hallais MF, Péault B (1999) Emergence of intraembryonic hematopoietic precursors in the pre-liver human embryo. Development 126(4):793–803

    PubMed  CAS  Google Scholar 

  77. Zovein AC, Turlo KA, Ponec RM, Lynch MR, Chen KC, Hofmann JJ et al (2010) Vascular remodeling of the vitelline artery initiates extravascular emergence of hematopoietic clusters. Blood 116(18):3435–3444

    Article  PubMed  CAS  Google Scholar 

  78. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR (1996) AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84(2):321–330

    Article  PubMed  CAS  Google Scholar 

  79. Wang Q, Stacy T, Binder M, Marín-Padilla M, Sharpe AH, Speck NA (1996) Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA 93:3444–3449

    Article  PubMed  CAS  Google Scholar 

  80. North T, Gu TL, Stacy T, Wang Q, Howard L, Binder M et al (1999) Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 126(11):2563–2575

    PubMed  CAS  Google Scholar 

  81. North TE, de Bruijn MF, Stacy T, Talebian L, Lind E, Robin C et al (2002) Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 16(5):661–672

    Article  PubMed  CAS  Google Scholar 

  82. Taoudi S, Medvinsky A (2007) Functional identification of the hematopoietic stem cell niche in the ventral domain of the embryonic dorsal aorta. Proc Natl Acad Sci USA 104(22):9399–9403

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Dieterlen-Lièvre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Dieterlen-Lièvre, F., Jaffredo, T. (2012). Intra-Aortic Hematopoietic Cells. In: Wick, G., Grundtman, C. (eds) Inflammation and Atherosclerosis. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0338-8_4

Download citation

Publish with us

Policies and ethics