Skip to main content

Macrophages and Atherosclerosis

  • Chapter
  • First Online:
  • 2064 Accesses

Abstract

Atherosclerosis is a slowly-developing, focal thickening of the intimal layer of large and middle sized arteries. By definition, atherosclerotic plaques contain cholesterol, as crystals, as extracellular cholesterol-rich lipid pools or within foam cells [1]. Foam cells are mainly macrophages and to a lesser degree vascular smooth muscle and cells. Dendritic cells can also become foamy [2] (and see below). Connective tissue expansion (i.e. sclerosis) is the other defining feature of atherosclerosis [1]. Arterial connective tissue consists of vascular smooth muscle cells, collagens, elastins, proteoglycans and matrix glycoproteins, all of which are amplified in plaques [3]. A broader term, arteriosclerosis, includes also fibrotic intimal lesions that do not contain excess cholesterol and may therefore not share the same aetiology as atherosclerosis. Good examples are the lesions generated experimentally after balloon injury, which do not show elevated cholesterol concentration or persistent macrophage infiltration [4].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Falk E (2006) Pathogenesis of atherosclerosis. J Am Coll Cardiol 47:C7–C12

    Article  PubMed  CAS  Google Scholar 

  2. Ordway D, Henao-Tamayo M, Orme IM, Gonzalez-Juarrero M (2005) Foamy macrophages within lung granulomas of mice infected with Mycobacterium tuberculosis express molecules characteristic of dendritic cells and antiapoptotic markers of the TNF receptor-associated factor family. J Immunol 175:3873–3881

    PubMed  CAS  Google Scholar 

  3. Wight TN, Merrilees MJ (2004) Proteoglycans in Atherosclerosis and Restenosis: Key Roles for Versican. Circ Res 94:1158–1167

    Article  PubMed  CAS  Google Scholar 

  4. Newby AC, Zaltsman AB (2000) Molecular mechanisms in intimal hyperplasia. J Pathol 190:300–309

    Article  PubMed  CAS  Google Scholar 

  5. Steinberg D (2006) Thematic review series: the pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy, part V: the discovery of the statins and the end of the controversy. J Lipid Res 47:1339–1351

    Article  PubMed  CAS  Google Scholar 

  6. Bouhlel MA, Derudas B, Rigamonti E, Dievart R, Brozek J, Haulon S et al (2007) PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab 6:137–143

    Article  PubMed  CAS  Google Scholar 

  7. Ait-Oufella H, Kinugawa K, Zoll J, Simon T, Boddaert J, Heeneman S et al (2007) Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice. Circulation 115:2168–2177

    Article  PubMed  CAS  Google Scholar 

  8. Smith JD, Trogan E, Ginsberg M, Grigaux C, Tian J, Miyata M (1995) Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci U S A 92:8264–8268

    Article  PubMed  CAS  Google Scholar 

  9. Tedgui A, Mallat Z (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 86:515–581

    Article  PubMed  CAS  Google Scholar 

  10. Auffray C, Sieweke MH, Geissmann F (2009) Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 27:669–692

    Article  PubMed  CAS  Google Scholar 

  11. Liu J, Sukhova GK, Sun J-S, Xu W-H, Libby P, Shi G-P (2004) Lysosomal cysteine proteases in atherosclerosis. Arterioscler Thromb Vasc Biol 24:1359–1366

    Article  PubMed  CAS  Google Scholar 

  12. Newby AC (2008) Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability. Arterioscler Thromb Vasc Biol 28:2108–2114

    Article  PubMed  CAS  Google Scholar 

  13. Lindstedt KA, Leskinen MJ, Kovanen PT (2004) Proteolysis of the pericellular matrix: a novel element determining cell survival and death in the pathogenesis of plaque erosion and rupture. Arterioscler Thromb Vasc Biol 24:1350–1358

    Article  PubMed  CAS  Google Scholar 

  14. Henriksen PA, Sallenave JM (2008) Human neutrophil elastase: mediator and therapeutic target in atherosclerosis. Int J Biochem Cell Biol 40:1095–1100

    Article  PubMed  CAS  Google Scholar 

  15. Serbina NV, Jia T, Hohl TM, Pamer EG (2008) Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol 26:421–452

    Article  PubMed  CAS  Google Scholar 

  16. van Leeuwen M, Gijbels MJ, Duijvestijn A, Smook M, van de Gaar MJ, Heeringa P et al (2008) Accumulation of myeloperoxidase-positive neutrophils in atherosclerotic lesions in LDLR−/− mice. Arterioscler Thromb Vasc Biol 28:84–89

    Article  PubMed  Google Scholar 

  17. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964

    Article  PubMed  CAS  Google Scholar 

  18. Martinez FO, Helming L, Gordon S (2008) Alternative Activation of Macrophages: An Immunologic Functional Perspective. Annu Rev Immunol 27:451–483

    Article  Google Scholar 

  19. Zernecke A, Shagdarsuren E, Weber C (2008) Chemokines in atherosclerosis. An update. Arterioscler Thromb Vasc Biol 28:1896

    Article  Google Scholar 

  20. Weber C, Zernecke A, Libby P (2008) The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol 8:802–815

    Article  PubMed  CAS  Google Scholar 

  21. Hansson GK (2009) Atherosclerosis – an immune disease: The Anitschkov Lecture 2007. Atherosclerosis 202:2–10

    Article  PubMed  CAS  Google Scholar 

  22. Steinberg D (2005) Thematic review series: the pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy: part II: the early evidence linking hypercholesterolemia to coronary disease in humans. J Lipid Res 46:179–190

    Article  PubMed  CAS  Google Scholar 

  23. Robertson AK, Rudling M, Zhou X, Gorelik L, Flavell RA, Hansson GK (2003) Disruption of TGF-beta signaling in T cells accelerates atherosclerosis. J Clin Invest 112:1342–1350

    PubMed  CAS  Google Scholar 

  24. Iiyama K, Hajra L, Iiyama M, Li HM, DiChiara M, Medoff BD et al (1999) Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. Circ Res 85:199–207

    PubMed  CAS  Google Scholar 

  25. Won D, Zhu SN, Chen M, Teichert AM, Fish JE, Matouk CC et al (2007) Relative reduction of endothelial nitric-oxide synthase expression and transcription in atherosclerosis-prone regions of the mouse aorta and in an in vitro model of disturbed flow. Am J Pathol 171:1691–1704

    Article  PubMed  CAS  Google Scholar 

  26. Paulson KE, Zhu SN, Chen M, Nurmohamed S, Jongstra-Bilen J, Cybulsky MI (2010) Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis. Circ Res 106:383–390

    Article  PubMed  CAS  Google Scholar 

  27. Dai G, Vaughn S, Zhang Y, Wang ET, Garcia-Cardena G, Gimbrone MA Jr (2007) Biomechanical forces in atherosclerosis-resistant vascular regions regulate endothelial redox balance via phosphoinositol 3-kinase/Akt-dependent activation of Nrf2. Circ Res 101:723–733

    Article  PubMed  CAS  Google Scholar 

  28. Wick G, Knoflach M, Xu QB (2004) Autoimmune and inflammatory mechanisms in atherosclerosis. Annu Rev Immunol 22:361–403

    Article  PubMed  CAS  Google Scholar 

  29. Wick G (2006) The heat is on: heat-shock proteins and atherosclerosis. Circulation 114:870–872

    Article  PubMed  Google Scholar 

  30. Wick MC, Mayerl C, Backovic A, van der Zee R, Jaschke W, Dietrich H et al (2008) In vivo imaging of the effect of LPS on arterial endothelial cells: molecular imaging of heat shock protein 60 expression. Cell Stress Chaperones 13:275–285

    Article  PubMed  CAS  Google Scholar 

  31. Camejo G, Hurt-Camejo E, Wiklund O, Bondjers G (1998) Association of apo B lipoproteins with arterial proteoglycans: pathological significance and molecular basis. Atherosclerosis 139:205–222

    Article  PubMed  CAS  Google Scholar 

  32. Skalen K, Gustafsson M, Rydberg EK, Hulten LM, Wiklund O, Innerarity TL et al (2002) Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417:750–754

    Article  PubMed  CAS  Google Scholar 

  33. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320:915–924

    Article  PubMed  CAS  Google Scholar 

  34. Navab M, Ananthramaiah GM, Reddy ST, Van Lenten BJ, Ansell B, Fonarow GC et al (2004) The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res 45:993–1007

    Article  PubMed  CAS  Google Scholar 

  35. Berliner JA, Territo MC, Sevanian A, Ramin S, Kim JA, Bamshad B et al (1990) Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest 85:1260–1266

    Article  PubMed  CAS  Google Scholar 

  36. Millonig G, Niederegger H, Rabl W, Hochleitner BW, Hoefer D, Romani N et al (2001) Network of vascular-associated dendritic cells in intima of healthy young individuals. Arterioscler Thromb Vasc Biol 21:503–508

    Article  PubMed  CAS  Google Scholar 

  37. Knoflach M, Kiechl S, Mayrl B, Kind M, Gaston JS, van der Zee R et al (2007) T-cell reactivity against HSP60 relates to early but not advanced atherosclerosis. Atherosclerosis 195:333–338

    Article  PubMed  CAS  Google Scholar 

  38. Weinberg PD (2002) Disease patterns at arterial branches and their relation to flow. Biorheology 39:533–537

    PubMed  Google Scholar 

  39. Poston RN, Haskard DO, Coucher JR, Gall NP, Johnson-Tidy RR (1992) Expression of intercellular adhesion molecule-1 in atherosclerotic plaques. Am J Pathol 140:665–673

    PubMed  CAS  Google Scholar 

  40. Fledderus JO, van Thienen JV, Boon RA, Dekker RJ, Rohlena J, Volger OL et al (2007) Prolonged shear stress and KLF2 suppress constitutive proinflammatory transcription through inhibition of ATF2. Blood 109:4249–4257

    Article  PubMed  CAS  Google Scholar 

  41. Torzewski M, Navarro B, Cheng F, Canisius A, Schmidt T, Bhakdi S et al (2009) Investigation of Sudan IV staining areas in aortas of infants and children: possible prelesional stages of atherogenesis. Atherosclerosis 206:159–167

    Article  PubMed  CAS  Google Scholar 

  42. Nakashima Y, Fujii H, Sumiyoshi S, Wight TN, Sueishi K (2007) Early human atherosclerosis: accumulation of lipid and proteoglycans in intimal thickenings followed by macrophage infiltration. Arterioscler Thromb Vasc Biol 27:1159–1165

    Article  PubMed  CAS  Google Scholar 

  43. Kolodgie FD, Burke AP, Nakazawa G, Virmani R (2007) Is pathologic intimal thickening the key to understanding early plaque progression in human atherosclerotic disease? Arterioscler Thromb Vasc Biol 27:986–989

    Article  PubMed  CAS  Google Scholar 

  44. Leroyer AS, Isobe H, Leseche G, Castier Y, Wassef M, Mallat Z et al (2007) Cellular origins and thrombogenic activity of microparticles isolated from human atherosclerotic plaques. J Am Coll Cardiol 49:772–777

    Article  PubMed  CAS  Google Scholar 

  45. Faggiotto A, Ross R, Harker L (1984) Studies of hypercholesterolaemia in the non-human primate. 1. Changes that lead to fatty streak formation. Arteriosclerosis 4:323–340

    Article  PubMed  CAS  Google Scholar 

  46. Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R (1994) ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 14:133–140

    Article  PubMed  CAS  Google Scholar 

  47. Tabas I (2005) Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler Thromb Vasc Biol 25:2255–2264

    Article  PubMed  CAS  Google Scholar 

  48. Clarke MC, Littlewood TD, Figg N, Maguire JJ, Davenport AP, Goddard M et al (2008) Chronic apoptosis of vascular smooth muscle cells accelerates atherosclerosis and promotes calcification and medial degeneration. Circ Res 102:1529–1538

    Article  PubMed  CAS  Google Scholar 

  49. Ross R (1999) Mechanisms of disease - atherosclerosis - an inflammatory disease. N Engl J Med 340:115–126

    Article  PubMed  CAS  Google Scholar 

  50. Rosenfeld ME, Polinsky P, Virmani R, Kauser K, Rubanyi G, Schwartz SM (2000) Advanced atherosclerotic lesions in the innominate artery of the ApoE knockout mouse. Arterioscler Thromb Vasc Biol 20:2587–2592

    Article  PubMed  CAS  Google Scholar 

  51. Aikawa M, Rabkin E, Okada Y, Voglic SJ, Clinton SK, Brinckerhoff CE et al (1998) Lipid lowering by diet reduces matrix metalloproteinase activity and increases collagen content of rabbit atheroma. A potential mechanism of lesion stabilisation. Circulation 97:2433–2444

    PubMed  CAS  Google Scholar 

  52. Aikawa M, Rabkin E, Voglic SJ, Shing H, Nagai R, Schoen FJ et al (1998) Lipid lowering promotes accumulation of mature smooth muscle cells expressing smooth muscle myosin heavy chain isoforms in rabbit atheroma. Circ Res 83:1015–1026

    PubMed  CAS  Google Scholar 

  53. Aikawa M, Rabkin E, Sugiyama S, Voglic SJ, Fukumoto Y, Furukawa Y et al (2001) An HMG-CoA reductase inhibitor, cerivastatin, suppresses growth of macrophages expressing matrix metalloproteinases and tissue factor in vivo and in vitro. Circulation 103:276–283

    PubMed  CAS  Google Scholar 

  54. Stary HC (2000) Natural history and histological classification of atherosclerotic lesions: an update. Arterioscler Thromb Vasc Biol 20:1177–1178

    Article  PubMed  CAS  Google Scholar 

  55. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262–1275

    Article  PubMed  CAS  Google Scholar 

  56. Crisby M, Nordin-Fredriksson G, Shah PK, Yano J, Zhu J, Nilsson J (2001) Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. Circulation 103:926–933

    PubMed  CAS  Google Scholar 

  57. Van Mieghem CA, McFadden EP, de Feyter PJ, Bruining N, Schaar JA, Mollet NR et al (2006) Noninvasive detection of subclinical coronary atherosclerosis coupled with assessment of changes in plaque characteristics using novel invasive imaging modalities: the Integrated Biomarker and Imaging Study (IBIS). J Am Coll Cardiol 47:1134–1142

    Article  PubMed  Google Scholar 

  58. Kadl A, Meher AK, Sharma PR, Lee MY, Doran AC, Johnstone SR et al (2010) Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res 107:737–746

    Article  PubMed  CAS  Google Scholar 

  59. Thomas AC, Sala-Newby GB, Ismail Y, Johnson JL, Pasterkamp G, Newby AC (2007) Genomics of foam cells and nonfoamy macrophages from rabbits identifies arginase-I as a differential regulator of nitric oxide production. Arterioscler Thromb Vasc Biol 27:571–577

    Article  PubMed  CAS  Google Scholar 

  60. Gallardo-Soler A, Gomez-Nieto C, Campo ML, Marathe C, Tontonoz P, Castrillo A et al (2008) Arginase I induction by modified lipoproteins in macrophages: a peroxisome proliferator-activated receptor-gamma/delta-mediated effect that links lipid metabolism and immunity. Mol Endocrinol 22:1394–1402

    Article  PubMed  CAS  Google Scholar 

  61. Shen LH, Zhou L, Wang BY, Pu J, Hu LH, Chai DJ et al (2008) Oxidized low-density lipoprotein induces differentiation of RAW264.7 murine macrophage cell line into dendritic-like cells. Atherosclerosis 199:257–264

    Article  PubMed  CAS  Google Scholar 

  62. Chase A, Bond M, Crook MF, Newby AC (2002) Role of nuclear factor-κB activation in metalloproteinase-1, -3 and −9 secretion by human macrophages in vitro and rabbit foam cells produced in vivo. Arterioscler Thromb Vasc Biol 22:765–771

    Article  PubMed  CAS  Google Scholar 

  63. Yan ZQ, Hansson GK (2007) Innate immunity, macrophage activation, and atherosclerosis. Immunol Rev 219:187–203

    Article  PubMed  CAS  Google Scholar 

  64. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG et al (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–1361

    Article  PubMed  CAS  Google Scholar 

  65. Buono C, Binder CJ, Stavrakis G, Witztum JL, Glimcher LH, Lichtman AH (2005) T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc Natl Acad Sci U S A 102:1596–1601

    Article  PubMed  CAS  Google Scholar 

  66. Hansson GK, Nilsson J (2009) Vaccination against atherosclerosis? Induction of atheroprotective immunity. Semin Immunopathol 31:95–101

    Article  PubMed  CAS  Google Scholar 

  67. Geissmann F, Auffray C, Palframan R, Wirrig C, Ciocca A, Campisi L et al (2008) Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses. Immunol Cell Biol 86:398–408

    Article  PubMed  CAS  Google Scholar 

  68. Combadiere C, Potteaux S, Rodero M, Simon T, Pezard A, Esposito B et al (2008) Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 117:1649–1657

    Article  PubMed  CAS  Google Scholar 

  69. Saederup N, Chan L, Lira SA, Charo IF (2008) Fractalkine deficiency markedly reduces macrophage accumulation and atherosclerotic lesion formation in CCR2(−/−) mice - evidence for independent chemokine functions in atherogenesis. Circulation 117:1642–1648

    Article  PubMed  CAS  Google Scholar 

  70. Boyle JJ, Harrington HA, Piper E, Elderfield K, Stark J, Landis RC et al (2009) Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype. Am J Pathol 174:1097–1108

    Article  PubMed  Google Scholar 

  71. Monaco C, Gregan SM, Navin TJ, Foxwell BM, Davies AH, Feldmann M (2009) Toll-like receptor-2 mediates inflammation and matrix degradation in human atherosclerosis. Circulation 120:2462–2469

    Article  PubMed  CAS  Google Scholar 

  72. Kramer MCA, Rittersma SZH, de Winter RJ, Ladich ER, Fowler DR, Liang Y-H et al (2010) Relationship of thrombus healing to underlying plaque morphology in sudden coronary death. J Am Coll Cardiol 55:122–132

    Article  PubMed  Google Scholar 

  73. Davies MJ (2000) Coronary disease - the pathophysiology of acute coronary syndromes. Heart 83:361–366

    Article  PubMed  CAS  Google Scholar 

  74. Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92:657–671

    PubMed  CAS  Google Scholar 

  75. Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK et al (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 349:2316–2325

    Article  PubMed  CAS  Google Scholar 

  76. Arbustini E, Dal Bello B, Morbini P, Burke AP, Bocciarelli M, Specchia G et al (1999) Plaque erosion is a major substrate for coronary thrombosis in acute myocardial infarction. Heart 82:269–272

    PubMed  CAS  Google Scholar 

  77. Virmani R, Burke AP, Farb A, Kolodgie FD (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47:C13–C18

    Article  PubMed  CAS  Google Scholar 

  78. Johnson JL, Carson K, Williams HM, Karanam S, Newby AC, Angelini GD et al (2005) Plaque rupture after short periods of fat-feeding in the apolipoprotein E knockout mouse: model characterisation, and effects of pravastatin treatment. Circulation 111:1422–1430

    Article  PubMed  CAS  Google Scholar 

  79. de Nooijer R, Verkleij CJN, von der Thusen JH, Jukema JW, van der Wall EE, van Berkel TJC et al (2006) Lesional overexpression of matrix metalloproteinase-9 promotes intraplaque hemorrhage in advanced lesions but not at earlier stages of atherogenesis. Arterioscler Thromb Vasc Biol 26:340–346

    Article  PubMed  Google Scholar 

  80. Newby AC, George SJ, Ismail Y, Johnson JL, Sala-Newby GB, Thomas AC (2009) Vulnerable atherosclerotic plaque metalloproteinases and foam cell phenotypes. Thromb Haemost 101:1006–1011

    PubMed  CAS  Google Scholar 

  81. Johnson JL, Baker AH, Oka K, Chan L, Newby AC, Jackson CL et al (2006) Suppression of atherosclerotic plaque progression and instability by tissue inhibitor of metalloproteinase-2: involvement of macrophage migration and apoptosis. Circulation 113:2435–2444

    Article  PubMed  CAS  Google Scholar 

  82. Johnson JL, Sala-Newby GB, Ismail Y, Aguilera CM, Newby AC (2008) Low tissue inhibitor of metalloproteinases 3 and high matrix metalloproteinase 14 levels defines a subpopulation of highly invasive foam-cell macrophages. Arterioscler Thromb Vasc Biol 28:1647–1653

    Article  PubMed  CAS  Google Scholar 

  83. Shi G-P, Sukhova GK, Grubb A, Ducharme A, Rhode LH, Lee RT et al (1999) Cystatin C deficiency in human atheroslcerosis and aortic aneurysms. J Clin Invest 104:1191–1197

    Article  PubMed  CAS  Google Scholar 

  84. Homma S, Troxclair DA, Zieske AW, Malcom GT, Strong JP (2008) Histological topographical comparisons of atherosclerosis progression in juveniles and young adults. Atherosclerosis 197:791–798

    Article  PubMed  CAS  Google Scholar 

  85. Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R (1997) Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 336:1276–1282

    Article  PubMed  CAS  Google Scholar 

  86. Verhoeven BA, Velema E, Schoneveld AH, de Vries JP, de Bruin P, Seldenrijk CA et al (2004) Athero-express: differential atherosclerotic plaque expression of mRNA and protein in relation to cardiovascular events and patient characteristics. Rationale and design. Eur J Epidemiol 19:1127–1133

    Article  PubMed  CAS  Google Scholar 

  87. Sluijter JPG, Pulskens WPC, Schoneveld AH, Velema E, Strijder CF, Moll F et al (2006) Matrix metalloproteinase 2 is associated with stable and matrix metalloproteinases 8 and 9 with vulnerable carotid atherosclerotic lesions – a study in human endarterectomy specimen pointing to a role for different extracellular matrix metalloproteinase inducer glycosylation forms. Stroke 37:235–239

    Article  PubMed  CAS  Google Scholar 

  88. de Kleijn DP, Moll FL, Hellings WE, Ozsarlak-Sozer G, de Bruin P, Doevendans PA et al (2010) Local atherosclerotic plaques are a source of prognostic biomarkers for adverse cardiovascular events. Arterioscler Thromb Vasc Biol 30:612–619

    Article  PubMed  Google Scholar 

  89. van der Wal AC, Becker AE, van der Loos CM, Das PK (1994) Site of intimal rupture or erosion of thrombosedcoronary atherosclerotic plaques is characterised by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89:36–44

    PubMed  Google Scholar 

  90. Grosser T, Fries S, FitzGerald GA (2006) Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J Clin Invest 116:4–15

    Article  PubMed  CAS  Google Scholar 

  91. Arnal JF, Douin-Echinard V, Tremollieres F, Terrisse AD, Sie P, Payrastre B et al (2007) Understanding the controversy about hormonal replacement therapy: insights from estrogen effects on experimental and clinical atherosclerosis. Arch Mal Coeur Vaiss 100:554–562

    PubMed  Google Scholar 

  92. Collins P, Mosca L, Geiger MJ, Grady D, Kornitzer M, Amewou-Atisso MG et al (2009) Effects of the selective estrogen receptor modulator raloxifene on coronary outcomes in the Raloxifene Use for The Heart trial: results of subgroup analyses by age and other factors. Circulation 119:922–930

    Article  PubMed  CAS  Google Scholar 

  93. Grainger DJ (2007) TGF-beta and atherosclerosis in man. Cardiovasc Res 74:213–222

    Article  PubMed  CAS  Google Scholar 

  94. Beltowski J, Liver X (2008) Receptors (LXR) as therapeutic targets in dyslipidemia. Cardiovasc Ther 26:297–316

    Article  PubMed  CAS  Google Scholar 

  95. Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK et al (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366:1279–1289

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew C. Newby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Newby, A.C. (2012). Macrophages and Atherosclerosis. In: Wick, G., Grundtman, C. (eds) Inflammation and Atherosclerosis. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0338-8_17

Download citation

Publish with us

Policies and ethics