Skip to main content

Adipokines, Inflammation, and Atherosclerosis

  • Chapter
  • First Online:
  • 2028 Accesses

Abstract

Obesity is the epidemic challenging our society from a medical as well as an economic perspective. The prevalence of obesity leading to decreased life expectancy due to, e.g., cardiovascular disease is dramatically escalating. In the UK, for instance, rates of obese (body-mass index ≥30 kg/m2) have increased by 30% in women, 40% in men, and 50% in children within the last decade resulting in 23% of adults being obese in 2007 and a prognosis of 50% for 2050 [1]. The causes underlying the obesity epidemic are still not entirely understood, but its consequences are already apparent, e.g. by the dramatic increase in type 2 diabetes (T2DM), a disease complicated by increased risk of macrovascular and microvascular disease, nowadays even occurring in children [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (2007) Time to supersize control efforts for obesity. Lancet 370:1521

    Google Scholar 

  2. Weiss R, Dziura J, Burgert TS et al (2004) Obesity and the metabolic syndrome in children and adolescents. N Engl J Med 350:2362–2374

    Article  PubMed  CAS  Google Scholar 

  3. Pi-Sunyer FX (1993) Medical hazards of obesity. Ann Intern Med 119:655–660

    PubMed  CAS  Google Scholar 

  4. Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787

    Article  PubMed  CAS  Google Scholar 

  5. Despres JP, Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 444:881–887

    Article  PubMed  CAS  Google Scholar 

  6. Zeyda M, Stulnig TM (2009) Obesity, inflammation, and insulin resistance–a mini-review. Gerontology 55:379–386

    Article  PubMed  CAS  Google Scholar 

  7. Imrie H, Abbas A, Kearney M (2010) Insulin resistance, lipotoxicity and endothelial dysfunction. Biochim Biophys Acta 1801:320–326

    PubMed  CAS  Google Scholar 

  8. Booth GL, Kapral MK, Fung K, Tu JV (2006) Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study. Lancet 368:29–36

    Article  PubMed  Google Scholar 

  9. Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB (1999) Elevated C-reactive protein levels in overweight and obese adults. JAMA 282:2131–2135

    Article  PubMed  CAS  Google Scholar 

  10. Lemieux I, Pascot A, Prud’homme D et al (2001) Elevated C-reactive protein: another component of the atherothrombotic profile of abdominal obesity. Arterioscler Thromb Vasc Biol 21:961–967

    Article  PubMed  CAS  Google Scholar 

  11. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM (1995) Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95:2409–2415

    Article  PubMed  CAS  Google Scholar 

  12. Roytblat L, Rachinsky M, Fisher A et al (2000) Raised interleukin-6 levels in obese patients. Obes Res 8:673–675

    Article  PubMed  CAS  Google Scholar 

  13. Christiansen T, Richelsen B, Bruun JM (2005) Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects. Int J Obes (Lond) 29:146–150

    Article  CAS  Google Scholar 

  14. Straczkowski M, Dzienis-Straczkowska S, Stepien A et al (2002) Plasma interleukin-8 concentrations are increased in obese subjects and related to fat mass and tumor necrosis factor-alpha system. J Clin Endocrinol Metab 87:4602–4606

    Article  PubMed  CAS  Google Scholar 

  15. Gomez-Ambrosi J, Catalan V, Ramirez B et al (2007) Plasma osteopontin levels and expression in adipose tissue are increased in obesity. J Clin Endocrinol Metab 92:3719–3727

    Article  PubMed  CAS  Google Scholar 

  16. Kiefer FW, Zeyda M, Todoric J et al (2008) Osteopontin expression in human and murine obesity: extensive local up-regulation in adipose tissue but minimal systemic alterations. Endocrinology 149:1350–1357

    Article  PubMed  CAS  Google Scholar 

  17. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    Article  PubMed  CAS  Google Scholar 

  18. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867

    Article  PubMed  CAS  Google Scholar 

  19. Karalis KP, Giannogonas P, Kodela E et al (2009) Mechanisms of obesity and related pathology: linking immune responses to metabolic stress. FEBS J 276:5747–5754

    Article  PubMed  CAS  Google Scholar 

  20. Hutley L, Prins JB (2005) Fat as an endocrine organ: relationship to the metabolic syndrome. Am J Med Sci 330:280–289

    Article  PubMed  Google Scholar 

  21. Maeda K, Okubo K, Shimomura I et al (1997) Analysis of an expression profile of genes in the human adipose tissue. Gene 190:227–235

    Article  PubMed  CAS  Google Scholar 

  22. Rabe K, Lehrke M, Parhofer KG, Broedl UC (2008) Adipokines and insulin resistance. Mol Med 14:741–751

    Article  PubMed  CAS  Google Scholar 

  23. Hajer GR, van Haeften TW, Visseren FLJ (2008) Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 29:2959–2971

    Article  PubMed  CAS  Google Scholar 

  24. Zeyda M, Stulnig TM (2007) Adipose tissue macrophages. Immunol Lett 112:61–67

    Article  PubMed  CAS  Google Scholar 

  25. Baffy G (2009) Kupffer cells in non-alcoholic fatty liver disease: the emerging view. J Hepatol 21(1):212–223

    Article  CAS  Google Scholar 

  26. Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72:219–246

    Article  PubMed  CAS  Google Scholar 

  27. Sell H, Eckel J (2010) Adipose tissue inflammation: novel insight into the role of macrophages and lymphocytes. Curr Opin Clin Nutr Metab Care 13:366–370

    Article  PubMed  Google Scholar 

  28. Gregor MF, Hotamisligil GS (2007) Thematic review series: Adipocyte Biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease. J Lipid Res 48:1905–1914

    Article  PubMed  CAS  Google Scholar 

  29. Zeyda M, Gollinger K, Kriehuber E et al (2010) Newly identified adipose tissue macrophage populations in obesity with distinct chemokine and chemokine receptor expression. Int J Obes (Lond) 34:1684–1694

    Article  CAS  Google Scholar 

  30. Curat CA, Miranville A, Sengenes C et al (2004) From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes. Diabetes 53:1285–1292

    Article  PubMed  CAS  Google Scholar 

  31. Hotamisligil GS (2005) Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes. Diabetes 54(Suppl 2):S73–S78

    Article  PubMed  CAS  Google Scholar 

  32. Petersen KF, Shulman GI (2006) Etiology of insulin resistance. Am J Med 119:S10–S16

    Article  PubMed  CAS  Google Scholar 

  33. de Luca C, Olefsky JM (2008) Inflammation and insulin resistance. FEBS Lett 582:97–105

    Article  PubMed  CAS  Google Scholar 

  34. Suganami T, Tanimoto-Koyama K, Nishida J et al (2007) Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler Thromb Vasc Biol 27:84–91

    Article  PubMed  CAS  Google Scholar 

  35. Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance. J Clin Invest 116:1793–1801

    Article  PubMed  CAS  Google Scholar 

  36. Madala MC, Franklin BA, Chen AY et al (2008) Obesity and age of first non-ST-segment elevation myocardial infarction. J Am Coll Cardiol 52:979–985

    Article  PubMed  Google Scholar 

  37. Rocha VZ, Libby P (2009) Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol 6:399–409

    Article  PubMed  CAS  Google Scholar 

  38. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    Article  PubMed  CAS  Google Scholar 

  39. Glynn RJ, MacFadyen JG, Ridker PM (2009) Tracking of high-sensitivity C-reactive protein after an initially elevated concentration: the JUPITER Study. Clin Chem 55:305–312

    Article  PubMed  CAS  Google Scholar 

  40. Libby P, Okamoto Y, Rocha VZ, Folco E (2010) Inflammation in atherosclerosis: transition from theory to practice. Circ J 74:213–220

    Article  PubMed  CAS  Google Scholar 

  41. Ohman MK, Shen Y, Obimba CI et al (2008) Visceral adipose tissue inflammation accelerates atherosclerosis in apolipoprotein E-deficient mice. Circulation 117:798–805

    Article  PubMed  CAS  Google Scholar 

  42. Calabrò P, Golia E, Maddaloni V et al (2009) Adipose tissue-mediated inflammation: the missing link between obesity and cardiovascular disease? Intern Emerg Med 4:25–34

    Article  PubMed  Google Scholar 

  43. Rajsheker S, Manka D, Blomkalns AL et al (2010) Crosstalk between perivascular adipose tissue and blood vessels. Curr Opin Pharmacol 10:191–196

    Article  PubMed  CAS  Google Scholar 

  44. Fain JN, Sacks HS, Bahouth SW et al (2010) Human epicardial adipokine messenger RNAs: comparisons of their expression in substernal, subcutaneous, and omental fat. Metabolism 59:1379–1386

    Article  PubMed  CAS  Google Scholar 

  45. Verhagen SN, Visseren FLJ (2011) Perivascular adipose tissue as a cause of atherosclerosis. Atherosclerosis 214:3–10

    Article  PubMed  CAS  Google Scholar 

  46. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    Article  PubMed  CAS  Google Scholar 

  47. Niswender KD, Magnuson MA (2007) Obesity and the beta cell: lessons from leptin. J Clin Invest 117:2753–2756

    Article  PubMed  CAS  Google Scholar 

  48. Kieffer TJ, Habener JF (2000) The adipoinsular axis: effects of leptin on pancreatic beta -cells. Am J Physiol 278:E1–E14

    CAS  Google Scholar 

  49. Munzberg H, Myers MG (2005) Molecular and anatomical determinants of central leptin resistance. Nat Neurosci 8:566–570

    Article  PubMed  CAS  Google Scholar 

  50. Lam QL, Lu L (2007) Role of leptin in immunity. Cell Mol Immunol 4:1–13

    PubMed  CAS  Google Scholar 

  51. Fernandez-Riejos P, Najib S, Santos-Alvarez J et al (2010) Role of leptin in the activation of immune cells. Mediators Inflamm 2010:568343

    Article  PubMed  CAS  Google Scholar 

  52. Sweeney G (2010) Cardiovascular effects of leptin. Nat Rev Cardiol 7:22–29

    Article  PubMed  CAS  Google Scholar 

  53. Singh M, Bedi US, Singh PP, Arora R, Khosla S (2010) Leptin and the clinical cardiovascular risk. Int J Cardiol 140:266–271

    Article  PubMed  Google Scholar 

  54. Singh P, Peterson TE, Barber KR et al (2010) Leptin upregulates the expression of plasminogen activator inhibitor-1 in human vascular endothelial cells. Biochem Biophys Res Commun 392:47–52

    Article  PubMed  CAS  Google Scholar 

  55. Hu E, Liang P, Spiegelman BM (1996) AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem 271:10697–10703

    Article  PubMed  CAS  Google Scholar 

  56. Arita Y, Kihara S, Ouchi N et al (1999) Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 257:79–83

    Article  PubMed  CAS  Google Scholar 

  57. Hotta K, Funahashi T, Bodkin NL et al (2001) Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes 50:1126–1133

    Article  PubMed  CAS  Google Scholar 

  58. Weyer C, Funahashi T, Tanaka S et al (2001) Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 86:1930–1935

    Article  PubMed  CAS  Google Scholar 

  59. Tschritter O, Fritsche A, Thamer C et al (2003) Plasma adiponectin concentrations predict insulin sensitivity of both glucose and lipid metabolism. Diabetes 52:239–243

    Article  PubMed  CAS  Google Scholar 

  60. Hanley AJG, Bowden D, Wagenknecht LE et al (2007) Associations of adiponectin with body Fat distribution and insulin sensitivity in nondiabetic Hispanics and African-Americans. J Clin Endocrinol Metab 92:2665–2671

    Article  PubMed  CAS  Google Scholar 

  61. Pajvani UB, Hawkins M, Combs TP et al (2004) Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J Biol Chem 279:12152–12162

    Article  PubMed  CAS  Google Scholar 

  62. Yamauchi T, Nio Y, Maki T et al (2007) Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med 13:332–339

    Article  PubMed  CAS  Google Scholar 

  63. Okamoto M, Ohara-Imaizumi M, Kubota N et al (2008) Adiponectin induces insulin secretion in vitro and in vivo at a low glucose concentration. Diabetologia 51:827–835

    Article  PubMed  CAS  Google Scholar 

  64. Kubota N, Yano W, Kubota T et al (2007) Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab 6:55–68

    Article  PubMed  CAS  Google Scholar 

  65. Folco EJ, Rocha VZ, López-Ilasaca M, Libby P (2009) Adiponectin inhibits pro-inflammatory signaling in human macrophages independent of interleukin-10. J Biol Chem 284:25569–25575

    Article  PubMed  CAS  Google Scholar 

  66. Lovren F, Pan Y, Quan A et al (2010) Adiponectin primes human monocytes into alternative anti-inflammatory M2 macrophages. Am J Physiol Heart Circ Physiol 299(3):H656–H663, ajpheart.00115.02010

    Article  PubMed  CAS  Google Scholar 

  67. Tilg H, Wolf AM (2005) Adiponectin: a key fat-derived molecule regulating inflammation. Expert Opin Ther Targets 9:245–251

    Article  PubMed  CAS  Google Scholar 

  68. Yamauchi T, Kamon J, Waki H et al (2003) Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem 278:2461–2468

    Article  PubMed  CAS  Google Scholar 

  69. Luo N, Liu J, Chung BH et al (2010) Macrophage adiponectin expression improves insulin sensitivity and protects against inflammation and atherosclerosis. Diabetes 59:791–799

    Article  PubMed  CAS  Google Scholar 

  70. Okamoto Y, Folco EJ, Minami M et al (2008) Adiponectin inhibits the production of CXC receptor 3 chemokine ligands in macrophages and reduces T-lymphocyte recruitment in atherogenesis. Circ Res 102:218–225

    Article  PubMed  CAS  Google Scholar 

  71. de Souza Batista CM, Yang RZ, Lee MJ et al (2007) Omentin plasma levels and gene expression are decreased in obesity. Diabetes 56:1655–1661

    Article  PubMed  CAS  Google Scholar 

  72. Yang RZ, Lee MJ, Hu H et al (2006) Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol 290:E1253–E1261

    CAS  Google Scholar 

  73. Tan BK, Adya R, Farhatullah S et al (2008) Omentin-1, a novel adipokine, is decreased in overweight insulin-resistant women with polycystic ovary syndrome. Diabetes 57:801–808

    Article  PubMed  CAS  Google Scholar 

  74. Schäffler A, Neumeier M, Herfarth H et al (2005) Genomic structure of human omentin, a new adipocytokine expressed in omental adipose tissue. Biochim Biophys Acta 1732:96–102

    PubMed  Google Scholar 

  75. Senolt L, Polanská M, Filková M et al (2010) Vaspin and omentin: new adipokines differentially regulated at the site of inflammation in rheumatoid arthritis. Ann Rheum Dis 69:1410–1411

    Article  PubMed  Google Scholar 

  76. Hida K, Wada J, Eguchi J et al (2005) Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity. Proc Natl Acad Sci USA 102:10610–10615

    Article  PubMed  CAS  Google Scholar 

  77. Klöting N, Berndt J, Kralisch S et al (2006) Vaspin gene expression in human adipose tissue: association with obesity and type 2 diabetes. Biochem Biophys Res Commun 339:430–436

    Article  PubMed  CAS  Google Scholar 

  78. Youn B-S, Klöting N, Kratzsch J et al (2008) Serum vaspin concentrations in human obesity and type 2 diabetes. Diabetes 57:372–377

    Article  PubMed  CAS  Google Scholar 

  79. Loeffelholz Cv, Mohlig M, Arafat AM et al (2010) Circulating vaspin is unrelated to insulin sensitivity in a cohort of nondiabetic humans. Eur J Endocrinol 162:507–513

    Article  CAS  Google Scholar 

  80. Seeger J, Ziegelmeier M, Bachmann A et al (2008) Serum levels of the adipokine vaspin in relation to metabolic and renal parameters. J Clin Endocrinol Metab 93:247–251

    Article  PubMed  CAS  Google Scholar 

  81. Fukuhara A, Matsuda M, Nishizawa M et al (2005) Visfatin: a protein secreted by visceral Fat that mimics the effects of insulin. Science 307:426–430

    Article  PubMed  CAS  Google Scholar 

  82. Filippatos TD, Derdemezis CS, Gazi IF et al (2008) Increased plasma visfatin levels in subjects with the metabolic syndrome. Eur J Clin Invest 38:71–72

    Article  PubMed  CAS  Google Scholar 

  83. Chen M-P, Chung F-M, Chang D-M et al (2006) Elevated plasma level of visfatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 91:295–299

    Article  PubMed  CAS  Google Scholar 

  84. Oki K, Yamane K, Kamei N, Nojima H, Kohno N (2007) Circulating visfatin level is correlated with inflammation, but not with insulin resistance. Clin Endocrinol 67:796–800

    Article  CAS  Google Scholar 

  85. Berndt J, Klöting N, Kralisch S et al (2005) Plasma visfatin concentrations and fat depot-specific mRNA expression in humans. Diabetes 54:2911–2916

    Article  PubMed  CAS  Google Scholar 

  86. Filippatos TD, Randeva HS, Derdemezis CS, Elisaf MS, Mikhailidis DP (2010) Visfatin/PBEF and atherosclerosis-related diseases. Curr Vasc Pharmacol 8:12–28

    Article  PubMed  CAS  Google Scholar 

  87. Kadoglou NP, Sailer N, Moumtzouoglou A et al (2010) Visfatin (nampt) and ghrelin as novel markers of carotid atherosclerosis in patients with type 2 diabetes. Exp Clin Endocrinol Diabetes 118:75–80

    Article  PubMed  CAS  Google Scholar 

  88. Liu SW, Qiao SB, Yuan JS, Liu DQ (2009) Association of plasma visfatin levels with inflammation, atherosclerosis and acute coronary syndromes (ACS) in humans. Clin Endocrinol (Oxf) 71:202–207

    Article  CAS  Google Scholar 

  89. Cheng KH, Chu CS, Lee KT et al (2008) Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease. Int J Obes (Lond) 32:268–274

    Article  CAS  Google Scholar 

  90. Sommer G, Kralisch S, Kloting N et al (2010) Visfatin is a positive regulator of MCP-1 in human adipocytes in vitro and in mice in vivo. Obesity (Silver Spring) 18:1486–1492

    Article  CAS  Google Scholar 

  91. Revollo JR, Korner A, Mills KF et al (2007) Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab 6:363–375

    Article  PubMed  CAS  Google Scholar 

  92. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91

    Article  PubMed  CAS  Google Scholar 

  93. Bruun JM, Pedersen SB, Richelsen B (2001) Regulation of interleukin 8 production and gene expression in human adipose tissue in vitro. J Clin Endocrinol Metab 86:1267–1273

    Article  PubMed  CAS  Google Scholar 

  94. Rotter V, Nagaev I, Smith U (2003) Interleukin-6 (IL-6) induces insulin resistance in 3 T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-α, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem 278:45777–45784

    Article  PubMed  CAS  Google Scholar 

  95. Ajuwon KM, Spurlock ME (2005) Palmitate activates the NF-kB transcription factor and induces IL-6 and TNFa expression in 3 T3-L1 adipocytes. J Nutr 135:1841–1846

    PubMed  CAS  Google Scholar 

  96. Hoch M, Eberle AN, Peterli R et al (2008) LPS induces interleukin-6 and interleukin-8 but not tumor necrosis factor-alpha in human adipocytes. Cytokine 41:29–37

    Article  PubMed  CAS  Google Scholar 

  97. Suganami T, Nishida J, Ogawa Y (2005) A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 25:2062–2068

    Article  PubMed  CAS  Google Scholar 

  98. Wang B, Jenkins JR, Trayhurn P (2005) Expression and secretion of inflammation-related adipokines by human adipocytes differentiated in culture: integrated response to TNF-alpha. Am J Physiol 288:E731–E740

    Article  CAS  Google Scholar 

  99. Nov O, Kohl A, Lewis EC et al (2010) Interleukin-1{beta} may mediate insulin resistance in liver-derived cells in response to adipocyte inflammation. Endocrinology 151:4247–4256

    Article  PubMed  CAS  Google Scholar 

  100. Weisberg SP, McCann D, Desai M et al (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808

    PubMed  CAS  Google Scholar 

  101. Xu H, Barnes GT, Yang Q et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830

    PubMed  CAS  Google Scholar 

  102. Lumeng CN, Maillard I, Saltiel AR (2009) T-ing up inflammation in fat. Nat Med 15:846–847

    Article  PubMed  CAS  Google Scholar 

  103. Anderson EK, Gutierrez DA, Hasty AH (2010) Adipose tissue recruitment of leukocytes. Curr Opin Lipidol 21:172–177

    Article  PubMed  CAS  Google Scholar 

  104. Fain JN (2006) Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam Horm 74:443–477

    Article  PubMed  CAS  Google Scholar 

  105. Zeyda M, Farmer D, Todoric J et al (2007) Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production. Int J Obes (Lond) 31:1420–1428

    Article  CAS  Google Scholar 

  106. Mohamed-Ali V, Goodrick S, Rawesh A et al (1997) Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-{alpha}, in vivo. J Clin Endocrinol Metab 82:4196–4200

    Article  PubMed  CAS  Google Scholar 

  107. Bernstein LE, Berry J, Kim S, Canavan B, Grinspoon SK (2006) Effects of etanercept in patients with the metabolic syndrome. Arch Intern Med 166:902–908

    Article  PubMed  CAS  Google Scholar 

  108. Paquot N, Castillo MJ, Lefebvre PJ, Scheen AJ (2000) No increased insulin sensitivity after a single intravenous administration of a recombinant human tumor necrosis factor receptor: Fc fusion protein in obese insulin-resistant patients. J Clin Endocrinol Metab 85:1316–1319

    Article  PubMed  CAS  Google Scholar 

  109. Dominguez H, Storgaard H, Rask-Madsen C et al (2005) Metabolic and vascular effects of tumor necrosis factor-Î ± blockade with etanercept in obese patients with type 2 diabetes. J Vasc Res 42:517–525

    Article  PubMed  CAS  Google Scholar 

  110. Sethi JK, Hotamisligil GS (1999) The role of TNF alpha in adipocyte metabolism. Semin Cell Dev Biol 10:19–29

    Article  PubMed  CAS  Google Scholar 

  111. Xie L, Ortega MT, Mora S, Chapes SK (2010) Interactive changes between macrophages and adipocytes. Clin Vaccine Immunol 17:651–659

    Article  PubMed  CAS  Google Scholar 

  112. Oda E (2008) The metabolic syndrome as a concept of adipose tissue disease. Hypertens Res 31:1283–1291

    Article  PubMed  CAS  Google Scholar 

  113. Franckhauser S, Elias I, Rotter Sopasakis V et al (2008) Overexpression of Il6 leads to hyperinsulinaemia, liver inflammation and reduced body weight in mice. Diabetologia 51(7):1306–1316

    Article  PubMed  CAS  Google Scholar 

  114. Pedersen BK, Febbraio MA (2007) Point: Interleukin-6 does have a beneficial role in insulin sensitivity and glucose homeostasis. J Appl Physiol 102:814–816

    Article  PubMed  CAS  Google Scholar 

  115. Kristiansen OP, Mandrup-Poulsen T (2005) Interleukin-6 and diabetes. Diabetes 54:S114–S124

    Article  PubMed  CAS  Google Scholar 

  116. Dayer JM, Chicheportiche R, Juge-Aubry C, Meier C (2006) Adipose tissue has anti-inflammatory properties: focus on IL-1 receptor antagonist (IL-1Ra). Ann N Y Acad Sci 1069:444–453

    Article  PubMed  CAS  Google Scholar 

  117. Juge-Aubry CE, Somm E, Pernin A et al (2005) Adipose tissue is a regulated source of interleukin-10. Cytokine 29:270–274

    PubMed  CAS  Google Scholar 

  118. den Boer MA, Voshol PJ, Schroder-van der Elst JP et al (2006) Endogenous interleukin-10 protects against hepatic steatosis but does not improve insulin sensitivity during high-fat feeding in mice. Endocrinology 147:4553–4558

    Article  CAS  Google Scholar 

  119. Cartier A, Bergeron J, Poirier P et al (2009) Increased plasma interleukin-1 receptor antagonist levels in men with visceral obesity. Ann Med 41(6):471–478

    Article  PubMed  CAS  Google Scholar 

  120. Carstensen M, Herder C, Kivimaki M et al (2010) Accelerated increase in serum interleukin-1 receptor antagonist starts 6 years before diagnosis of type 2 diabetes: Whitehall II prospective cohort study. Diabetes 59:1222–1227

    Article  PubMed  CAS  Google Scholar 

  121. Saltevo J, Laakso M, Jokelainen J et al (2008) Levels of adiponectin, C-reactive protein and interleukin-1 receptor antagonist are associated with insulin sensitivity: a population-based study. Diabetes Metab Res Rev 24:378–383

    Article  PubMed  CAS  Google Scholar 

  122. Mazzali M, Kipari T, Ophascharoensuk V et al (2002) Osteopontin–a molecule for all seasons. QJM 95:3–13

    Article  PubMed  CAS  Google Scholar 

  123. Standal T, Borset M, Sundan A (2004) Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp Oncol 26:179–184

    PubMed  CAS  Google Scholar 

  124. Rangaswami H, Bulbule A, Kundu GC (2006) Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol 16:79–87

    Article  PubMed  CAS  Google Scholar 

  125. Xu G, Nie H, Li N et al (2005) Role of osteopontin in amplification and perpetuation of rheumatoid synovitis. J Clin Invest 115:1060–1067

    PubMed  CAS  Google Scholar 

  126. Teti A, Farina AR, Villanova I et al (1998) Activation of MMP-2 by human GCT23 giant cell tumour cells induced by osteopontin, bone sialoprotein and GRGDSP peptides is RGD and cell shape change dependent. Int J Cancer 77:82–93

    Article  PubMed  CAS  Google Scholar 

  127. Nomiyama T, Perez-Tilve D, Ogawa D et al (2007) Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice. J Clin Invest 117:2877–2888

    Article  PubMed  CAS  Google Scholar 

  128. Kiefer FW, Zeyda M, Gollinger K et al (2010) Neutralization of osteopontin inhibits obesity-induced inflammation and insulin resistance. Diabetes 59:935–946

    Article  PubMed  CAS  Google Scholar 

  129. Bertola A, Deveaux V, Bonnafous S et al (2009) Elevated expression of osteopontin may be related to adipose tissue macrophage accumulation and liver steatosis in morbid obesity. Diabetes 58:125–133

    Article  PubMed  CAS  Google Scholar 

  130. Lin YH, Yang-Yen HF (2001) The osteopontin-CD44 survival signal involves activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. J Biol Chem 276:46024–46030

    Article  PubMed  CAS  Google Scholar 

  131. de Kleijn DP, Moll FL, Hellings WE et al (2010) Local atherosclerotic plaques are a source of prognostic biomarkers for adverse cardiovascular events. Arterioscler Thromb Vasc Biol 30:612–619

    Article  PubMed  CAS  Google Scholar 

  132. O’Brien ER, Garvin MR, Stewart DK et al (1994) Osteopontin is synthesized by macrophage, smooth muscle, and endothelial cells in primary and restenotic human coronary atherosclerotic plaques. Arterioscler Thromb 14:1648–1656

    Article  PubMed  Google Scholar 

  133. O’Brien KD, Kuusisto J, Reichenbach DD et al (1995) Osteopontin is expressed in human aortic valvular lesions. Circulation 92:2163–2168

    PubMed  Google Scholar 

  134. Bruemmer D, Collins AR, Noh G et al (2003) Angiotensin II-accelerated atherosclerosis and aneurysm formation is attenuated in osteopontin-deficient mice. J Clin Invest 112:1318–1331

    PubMed  CAS  Google Scholar 

  135. Isoda K, Nishikawa K, Kamezawa Y et al (2002) Osteopontin plays an important role in the development of medial thickening and neointimal formation. Circ Res 91:77–82

    Article  PubMed  CAS  Google Scholar 

  136. Kato R, Momiyama Y, Ohmori R et al (2009) Prognostic significance of plasma osteopontin levels in patients undergoing percutaneous coronary intervention. Circ J 73:152–157

    Article  PubMed  CAS  Google Scholar 

  137. Minoretti P, Falcone C, Calcagnino M et al (2006) Prognostic significance of plasma osteopontin levels in patients with chronic stable angina. Eur Heart J 27:802–807

    Article  PubMed  CAS  Google Scholar 

  138. Rosenberg M, Zugck C, Nelles M et al (2008) Osteopontin, a new prognostic biomarker in patients with chronic heart failure. Circ Heart Fail 1:43–49

    Article  PubMed  CAS  Google Scholar 

  139. Bazzichi L, Ghiadoni L, Rossi A et al (2009) Osteopontin is associated with increased arterial stiffness in rheumatoid arthritis. Mol Med 15:402–406

    Article  PubMed  CAS  Google Scholar 

  140. Kase S, Yokoi M, Saito W et al (2007) Increased osteopontin levels in the vitreous of patients with diabetic retinopathy. Ophthalmic Res 39:143–147

    Article  PubMed  CAS  Google Scholar 

  141. Lai CF, Seshadri V, Huang K et al (2006) An osteopontin-NADPH oxidase signaling cascade promotes pro-matrix metalloproteinase 9 activation in aortic mesenchymal cells. Circ Res 98:1479–1489

    Article  PubMed  CAS  Google Scholar 

  142. Subramanian V, Krishnamurthy P, Singh K, Singh M (2007) Lack of osteopontin improves cardiac function in streptozotocin-induced diabetic mice. Am J Physiol Heart Circ Physiol 292:H673–H683

    Article  PubMed  CAS  Google Scholar 

  143. Massiéra F, Bloch-Faure M, Ceiler D et al (2001) Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. FASEB J 15(14):2727–2729, 01-0457fje

    PubMed  Google Scholar 

  144. Sata M, Fukuda D (2010) Crucial role of renin-angiotensin system in the pathogenesis of atherosclerosis. J Med Invest 57:12–25

    Article  PubMed  Google Scholar 

  145. Sarzani R, Marcucci P, Salvi F et al (2007) Angiotensin II stimulates and atrial natriuretic peptide inhibits human visceral adipocyte growth. Int J Obes 32:259–267

    Article  CAS  Google Scholar 

  146. Alessi MC, Peiretti F, Morange P et al (1997) Production of plasminogen activator inhibitor 1 by human adipose tissue: possible link between visceral fat accumulation and vascular disease. Diabetes 46:860–867

    Article  PubMed  CAS  Google Scholar 

  147. Festa A, D’Agostino R, Tracy RP, Haffner SM (2002) Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes. Diabetes 51:1131–1137

    Article  PubMed  CAS  Google Scholar 

  148. Bastelica D, Morange P, Berthet B et al (2002) Stromal cells are the main plasminogen activator inhibitor-1-producing cells in human fat: evidence of differences between visceral and subcutaneous deposits. Arterioscler Thromb Vasc Biol 22:173–178

    Article  PubMed  CAS  Google Scholar 

  149. Kishore P, Li W, Tonelli J et al (2010) Adipocyte-derived factors potentiate nutrient-induced production of plasminogen activator inhibitor-1 by macrophages. Sci Transl Med 2:20ra15

    Article  PubMed  CAS  Google Scholar 

  150. Steppan CM, Bailey ST, Bhat S et al (2001) The hormone resistin links obesity to diabetes. Nature 409:307–312

    Article  PubMed  CAS  Google Scholar 

  151. Savage DB, Sewter CP, Klenk ES et al (2001) Resistin/Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans. Diabetes 50:2199–2202

    Article  PubMed  CAS  Google Scholar 

  152. Patel L, Buckels AC, Kinghorn IJ et al (2003) Resistin is expressed in human macrophages and directly regulated by PPAR[gamma] activators. Biochem Biophys Res Commun 300:472–476

    Article  PubMed  CAS  Google Scholar 

  153. Yang R-Z, Huang Q, Xu A et al (2003) Comparative studies of resistin expression and phylogenomics in human and mouse. Biochem Biophys Res Commun 310:927–935

    Article  PubMed  CAS  Google Scholar 

  154. Filková M, Haluzík M, Gay S, Senolt L (2009) The role of resistin as a regulator of inflammation: implications for various human pathologies. Clin Immunol 133:157–170

    Article  PubMed  CAS  Google Scholar 

  155. Reilly MP, Lehrke M, Wolfe ML et al (2005) Resistin is an inflammatory marker of atherosclerosis in humans. Circulation 111:932–939

    Article  PubMed  CAS  Google Scholar 

  156. Chu S, Ding W, Li K, Pang Y, Tang C (2008) Plasma resistin associated with myocardium injury in patients with acute coronary syndrome. Circ J 72:1249–1253

    Article  PubMed  CAS  Google Scholar 

  157. Jung HS, Park K-H, Cho YM et al (2006) Resistin is secreted from macrophages in atheromas and promotes atherosclerosis. Cardiovasc Res 69:76–85

    Article  PubMed  CAS  Google Scholar 

  158. Lee T-S, Lin C-Y, Tsai J-Y et al (2009) Resistin increases lipid accumulation by affecting class A scavenger receptor, CD36 and ATP-binding cassette transporter-A1 in macrophages. Life Sci 84:97–104

    Article  PubMed  CAS  Google Scholar 

  159. Verma S, Li S-H, Wang C-H et al (2003) Resistin promotes endothelial cell activation: further evidence of adipokine-endothelial interaction. Circulation 108:736–740

    Article  PubMed  CAS  Google Scholar 

  160. Calabro P, Samudio I, Willerson JT, Yeh ETH (2004) Resistin promotes smooth muscle cell proliferation through activation of extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3-kinase pathways. Circulation 110:3335–3340

    Article  PubMed  CAS  Google Scholar 

  161. von Eynatten M, Humpert PM (2008) Retinol-binding protein-4 in experimental and clinical metabolic disease. Expert Rev Mol Diagn 8:289–299

    Article  Google Scholar 

  162. Yang Q, Graham TE, Mody N et al (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436:356–362

    Article  PubMed  CAS  Google Scholar 

  163. Graham TE, Yang Q, Bluher M et al (2006) Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med 354:2552–2563

    Article  PubMed  CAS  Google Scholar 

  164. Hassink S, Balagopal PB (2009) RBP4: from retinol transporter to biomarker? J Pediatr 154:5–7

    Article  PubMed  Google Scholar 

  165. Graham TE, Wason CJ, Bluher M, Kahn BB (2007) Shortcomings in methodology complicate measurements of serum retinol binding protein (RBP4) in insulin-resistant human subjects. Diabetologia 50:814–823

    Article  PubMed  CAS  Google Scholar 

  166. Ingelsson E, Lind L (2009) Circulating retinol-binding protein 4 and subclinical cardiovascular disease in the elderly. Diabetes Care 32:733–735

    Article  PubMed  CAS  Google Scholar 

  167. Park SE, Kim DH, Lee JH et al (2009) Retinol-binding protein-4 is associated with endothelial dysfunction in adults with newly diagnosed type 2 diabetes mellitus. Atherosclerosis 204:23–25

    Article  PubMed  CAS  Google Scholar 

  168. Stuck BJ, Kahn BB (2009) Retinol-binding protein 4 (RBP4): a biomarker for subclinical atherosclerosis? Am J Hypertens 22:948–949

    Article  PubMed  CAS  Google Scholar 

  169. Goralski KB, McCarthy TC, Hanniman EA et al (2007) Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J Biol Chem 282:28175–28188

    Article  PubMed  CAS  Google Scholar 

  170. Takahashi M, Takahashi Y, Takahashi K et al (2008) Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3 T3-L1 adipocytes. FEBS Lett 582:573–578

    Article  PubMed  CAS  Google Scholar 

  171. Becker M, Rabe K, Lebherz C et al (2010) Expression of human chemerin induces insulin resistance in the skeletal muscle but does not affect weight, lipid levels and atherosclerosis in LDL receptor knockout mice on high fat diet. Diabetes 59:2898–2903

    Article  PubMed  CAS  Google Scholar 

  172. Ernst MC, Issa M, Goralski KB, Sinal CJ (2010) Chemerin exacerbates glucose intolerance in mouse models of obesity and diabetes. Endocrinology 151:1998–2007

    Article  PubMed  CAS  Google Scholar 

  173. Bozaoglu K, Bolton K, McMillan J et al (2007) Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 148:4687–4694

    Article  PubMed  CAS  Google Scholar 

  174. Weigert J, Neumeier M, Wanninger J et al (2010) Systemic chemerin is related to inflammation rather than obesity in type 2 diabetes. Clin Endocrinol (Oxf) 72:342–348

    Article  CAS  Google Scholar 

  175. Parlee SD, Ernst MC, Muruganandan S, Sinal CJ, Goralski KB (2010) Serum chemerin levels vary with time of day and are modified by obesity and tumor necrosis factor-{alpha}. Endocrinology 151:2590–2602

    Article  PubMed  CAS  Google Scholar 

  176. Sell H, Divoux A, Poitou C et al (2010) Chemerin correlates with markers for fatty liver in morbidly obese patients and strongly decreases after weight loss induced by bariatric surgery. J Clin Endocrinol Metab 95:2892–2896

    Article  PubMed  CAS  Google Scholar 

  177. Yang M, Yang G, Dong J et al (2010) Elevated plasma levels of chemerin in newly diagnosed type 2 diabetes mellitus with hypertension. J Investig Med 58:883–886

    PubMed  CAS  Google Scholar 

  178. Bozaoglu K, Segal D, Shields KA et al (2009) Chemerin is associated with metabolic syndrome phenotypes in a Mexican-American population. J Clin Endocrinol Metab 94:3085–3088

    Article  PubMed  CAS  Google Scholar 

  179. Lehrke M, Becker A, Greif M et al (2009) Chemerin is associated with markers of inflammation and components of the metabolic syndrome but does not predict coronary atherosclerosis. Eur J Endocrinol 161:339–344

    Article  PubMed  CAS  Google Scholar 

  180. Hart R, Greaves DR (2010) Chemerin contributes to inflammation by promoting macrophage adhesion to VCAM-1 and fibronectin through clustering of VLA-4 and VLA-5. J Immunol 185:3728–3739

    Article  PubMed  CAS  Google Scholar 

  181. Zabel BA, Allen SJ, Kulig P et al (2005) Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J Biol Chem 280:34661–34666

    Article  PubMed  CAS  Google Scholar 

  182. Cash JL, Hart R, Russ A et al (2008) Synthetic chemerin-derived peptides suppress inflammation through ChemR23. J Exp Med 205:767–775

    Article  PubMed  CAS  Google Scholar 

  183. Cash JL, Christian AR, Greaves DR (2010) Chemerin peptides promote phagocytosis in a ChemR23- and Syk-dependent manner. J Immunol 184:5315–5324

    Article  PubMed  CAS  Google Scholar 

  184. Fain JN, Kanu A, Bahouth SW et al (2002) Comparison of PGE2, prostacyclin and leptin release by human adipocytes versus explants of adipose tissue in primary culture. Prostaglandins Leukot Essent Fatty Acids 67:467–473

    Article  PubMed  CAS  Google Scholar 

  185. Horrillo R, Gonzalez-Periz A, Martinez-Clemente M et al (2010) 5-Lipoxygenase activating protein signals adipose tissue inflammation and lipid dysfunction in experimental obesity. J Immunol 184:3978–3987

    Article  PubMed  CAS  Google Scholar 

  186. Nunemaker CS, Chen M, Pei H et al (2008) 12-Lipoxygenase-knockout mice are resistant to inflammatory effects of obesity induced by Western diet. Am J Physiol 295:E1065–E1075

    CAS  Google Scholar 

  187. Wittwer J, Hersberger M (2007) The two faces of the 15-lipoxygenase in atherosclerosis. Prostaglandins Leukot Essent Fatty Acids 77:67–77

    Article  PubMed  CAS  Google Scholar 

  188. Hsieh PS, Jin JS, Chiang CF et al (2009) COX-2-mediated inflammation in fat is crucial for obesity-linked insulin resistance and fatty liver. Obesity (Silver Spring) 17:1150–1157

    CAS  Google Scholar 

  189. Hsieh PS, Lu KC, Chiang CF, Chen CH (2010) Suppressive effect of COX2 inhibitor on the progression of adipose inflammation in high-fat-induced obese rats. Eur J Clin Invest 40:164–171

    Article  PubMed  CAS  Google Scholar 

  190. Koska J, Ortega E, Bunt JC et al (2009) The effect of salsalate on insulin action and glucose tolerance in obese non-diabetic patients: results of a randomised double-blind placebo-controlled study. Diabetologia 52:385–393

    Article  PubMed  CAS  Google Scholar 

  191. Serhan CN (2008) Controlling the resolution of acute inflammation: a new genus of dual anti-inflammatory and proresolving mediators. J Periodontol 79:1520–1526

    Article  PubMed  CAS  Google Scholar 

  192. Serhan CN (2007) Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol 25:101–137

    Article  PubMed  CAS  Google Scholar 

  193. Merched AJ, Ko K, Gotlinger KH, Serhan CN, Chan L (2008) Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. FASEB J 22:3595–3606

    Article  PubMed  CAS  Google Scholar 

  194. Todoric J, Loffler M, Huber J et al (2006) Adipose tissue inflammation induced by high-fat diet in obese diabetic mice is prevented by n-3 polyunsaturated fatty acids. Diabetologia 49:2109–2119

    Article  PubMed  CAS  Google Scholar 

  195. Zeyda M, Stulnig TM (2009) Dietary fatty acids as modulators of adipose tissue inflammation. In: Awad AB, Bradford PG (eds) Adipose tissue and inflammation. CRC Press, Boca Raton, pp 189–204. ISBN 978-1-4200-9130-4

    Google Scholar 

  196. Breslow JL (2006) n-3 Fatty acids and cardiovascular disease. Am J Clin Nutr 83:S1477–S1482

    Google Scholar 

  197. Gonzalez-Periz A, Horrillo R, Ferre N et al (2009) Obesity-induced insulin resistance and hepatic steatosis are alleviated by {omega}-3 fatty acids: a role for resolvins and protectins. FASEB J 23:1946–1957

    Article  PubMed  CAS  Google Scholar 

  198. Li S, Sun Y, Liang C-P et al (2009) Defective phagocytosis of apoptotic cells by macrophages in atherosclerotic lesions of ob/ob mice and reversal by a fish oil diet. Circ Res 105:1072–1082

    Article  PubMed  CAS  Google Scholar 

  199. Tsuchida A, Yamauchi T, Takekawa S et al (2005) Peroxisome proliferator-activated receptor (PPAR)alpha activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: comparison of activation of PPARalpha, PPARgamma, and their combination. Diabetes 54:3358–3370

    Article  PubMed  CAS  Google Scholar 

  200. Nakamachi T, Nomiyama T, Gizard F et al (2007) PPARalpha agonists suppress osteopontin expression in macrophages and decrease plasma levels in patients with type 2 diabetes. Diabetes 56:1662–1670

    Article  PubMed  CAS  Google Scholar 

  201. Toyoda T, Kamei Y, Kato H et al (2008) Effect of peroxisome proliferator-activated receptor-alpha ligands in the interaction between adipocytes and macrophages in obese adipose tissue. Obesity (Silver Spring) 16(6):1199–1207

    Article  CAS  Google Scholar 

  202. Gonzalez-Periz A, Claria J (2010) Resolution of adipose tissue inflammation. Sci World J 10:832–856

    CAS  Google Scholar 

  203. Lidell ME, Enerback S (2010) Brown adipose tissue-a new role in humans? Nat Rev Endocrinol 6:319–325

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Stulnig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Stulnig, T.M., Zeyda, M. (2012). Adipokines, Inflammation, and Atherosclerosis. In: Wick, G., Grundtman, C. (eds) Inflammation and Atherosclerosis. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0338-8_14

Download citation

Publish with us

Policies and ethics