Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 521))

  • 1612 Accesses

Abstract

The present chapter mainly deals with several non-standard issues in the theory of plasticity for traditional metals as well as porous and powder metals. The flow formulation is adopted throughout the chapter. All the material models considered are rigid plastic, i.e. the elastic portion of the strain rate tensor is neglected. Assuming a rigid/perfectly plastic material model, it is shown that the velocity fields adjacent to surfaces of maximum friction must be describable by non-differentiable functions where the equivalent strain rate approaches infinity. This result is extended to the double-shearing model. Qualitative behavior of solutions based on various models of pressure-dependent plasticity is considered by means of problems permitting closed-form solutions. In particular, such features of the solutions as non-uniqueness, non-existence, singularity and rigid zones are emphasized. One possible application of the aforementioned singular solutions to describing intensive plastic deformation in a narrow layer near friction surfaces is shortly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • S. Alexandrov. Velocity field near its discontinuity in an arbitrary flow of an ideal rigid — plastic material. Mechanics of Solids, 30:111–117, 1995.

    Google Scholar 

  • S. Alexandrov. A note on the limit load of welded joints of a rectangular cross section. Fatigue and Fracture of Engineering Materials and Structures, 22:449–452, 1999.

    Article  Google Scholar 

  • S. Alexandrov. Interrelation between constitutive laws and fracture criteriain the vicinity of friction surfaces. In E. Bouchaud, D. Jeulin, C. Prioul, and S. Roux, editors, Physical Aspects of Fracture, pages 179–190. Kluwer, 2001.

    Google Scholar 

  • S. Alexandrov. Comparison of double-shearing and coaxial models of pressure-dependent plastic flow at frictional boundaries. Trans. ASME. J. Appl. Mech., 70:212–219, 2003.

    Article  MATH  Google Scholar 

  • S. Alexandrov. Singular solutions in an axisymmetric flow of a medium obeying the double shear model. J. Appl. Mech. Techn. Phys., 46:766–771, 2005.

    Article  Google Scholar 

  • S. Alexandrov. The strain rate intensity factor and its applications: a review. Materials Science Forum, 623:1–20, 2009.

    Article  Google Scholar 

  • S. Alexandrov and N. Alexandrova. On the maximum friction law in viscoplasticity. Mechanics of Time-Dependent Materials, 4:99–104, 2000a.

    Article  Google Scholar 

  • S. Alexandrov and N. Alexandrova. On the maximum friction law for rigid/plastic, hardening materials. Meccanica, 35:393–398, 2000b.

    Article  MATH  Google Scholar 

  • S. Alexandrov and B. Druyanov. Pressing of a compact plastic material. J. Appl. Mech. Techn. Physics, 31:108–113, 1990.

    Article  Google Scholar 

  • S. Alexandrov and D. Harris. Comparison of solution behaviour for three models of pressure-dependent plasticity: a simple analytical example. Int. J. Mech. Sciences, 48:750–762, 2006.

    Article  MATH  Google Scholar 

  • S. Alexandrov and M. Kocak. Effect of three-dimensional deformation on the limit load of highly weld strength under matched specimens under tension. Proc. of the Institution of Mech. Engineers, Part C: J. Mech. Engng Science, 222:107–115, 2008.

    Article  Google Scholar 

  • S. Alexandrov and E. Lyamina. Singular solutions for plane plastic flow of pressure-dependent materials. Doklady Physics, 47:308–311, 2002.

    Article  MathSciNet  Google Scholar 

  • S. Alexandrov and E. Lyamina. Qualitative distinctions in the solutions based on the plasticity theories with mohr-coulomb yield criterion. J. Appl. Mech. Techn. Physics, 46:883–890, 2005.

    Article  Google Scholar 

  • S. Alexandrov and E. Lyamina. Prediction of fracture in the vicinity of friction surfaces in metal forming processes. J. Appl. Mech. Techn. Physics, 47:757–761, 2006.

    Article  Google Scholar 

  • S. Alexandrov and E. Lyamina. A nonlocal criterion of fracture near a friction surface and its application to analysis of drawing and extrusion processes. J. Machinery, Manufacture and Reliability, 36:262–267, 2007.

    Article  Google Scholar 

  • S. Alexandrov and E. Lyamina. Strain rate intensity factors for a plastic mass flow between two conical surfaces. Mechanics of Solids, 43:751–755, 2008.

    Article  Google Scholar 

  • S. Alexandrov and G. Mishuris. Viscoplasticity with a saturation stress: distinguished features of the model. Arch. Appl. Mech., 77:35–47, 2007.

    Article  MATH  Google Scholar 

  • S. Alexandrov and O. Richmond. On estimating the tensile strength of an adhesive plastic layer of arbitrary simply connected contour. Int. J. Solids Struct, 37:669–686, 2000.

    Article  MATH  Google Scholar 

  • S. Alexandrov and O. Richmond. Singular plastic flow fields near surfaces of maximum friction stress. Int. J. Non-Linear Mech., 36:1–11, 2001a.

    Article  MATH  MathSciNet  Google Scholar 

  • S. Alexandrov and O. Richmond. Couette flows of rigid/plastic solids: an-alytical examples of the interaction of constitutive and factional laws. Int. J. Mech. Sciences, 43:653–665, 2001b.

    Article  MATH  Google Scholar 

  • S. Alexandrov, V. Danilov, and N. Chikanova. On the stagnation zone in a simulation of axisymmetric pressure metal forming under creep. Mechanics of Solids, 35:127–129, 2000.

    Google Scholar 

  • S. Alexandrov, G. Mishuris, W. Mishuris, and R.E. Sliwa. On the dead zone formation and limit analysis in axially symmetric extrusion. Int. J. Mech. Sciences, 43:367–379, 2001.

    Article  MATH  Google Scholar 

  • S. Alexandrov, G. Mishuris, W. Mishuris, and R.E. Sliwa. Developing the concept of the strain rate intensity factor in plasticity theory. Doklady Physics, 48:131–133, 2003.

    Article  Google Scholar 

  • S. Alexandrov, I.D. Baranova, and G. Mishuris. Compression of a viscoplastic layer between rough parallel plates. Mechanics of Solids, 43:863–869, 2008a.

    Article  Google Scholar 

  • S. Alexandrov, A. Pirumov, and O. Chesnikova. Plastic flow of porous materials in friction contact area. Powder Metallurgy and Metal Ceramics, 47:512–517, 2008b.

    Article  Google Scholar 

  • S. Alexandrov, D.Z. Grabko, and O.A. Shikimaka. The determination of the thickness of a layer of intensive deformations in the vicinity of the friction surface in metal forming processes. J. of Machinery, Manufacture and Reliability, 38:277–282, 2009.

    Article  Google Scholar 

  • T. Aukrust and S. LaZghab. Thin shear boundary layers in flow of hot aluminium. Int. J. Plasticity, 16:59–71, 2000.

    Article  Google Scholar 

  • B. Avitzur. Metal Forming: The Application of Limit Analysis. Dekker, 1980.

    Google Scholar 

  • W. Bier and S. Hartmann. A finite strain constitutive model for metal powder compaction using a unique and convex single surface yield function. Eur. J Mech. A/Solids, 25:1009–1030, 2006.

    Article  MATH  Google Scholar 

  • J. Chakrabarty. Theory of Plasticity. Butherwoth-Heinemann, 2006.

    Google Scholar 

  • S. M. Doraivelu, H.L. Gegel, J.S. Gunasekera, J.C. Malas, J.T. Morgan, and J.F. Thomas. A new yield function for compressible p/m materials. Int. J. Mech. Sciences, 26:527–535, 1984.

    Article  Google Scholar 

  • B. Druyanov. Technological Mechanics of Porous Bodies. Clarendon Press, 1993.

    Google Scholar 

  • B. Druyanov and S. Alexandrov. Laws of external friction of plastic bodies. Int. J. Plasticity, 8:819–826, 1992.

    Article  MATH  Google Scholar 

  • B. Druyanov and R.I. Nepershin. Problems of Technological Plasticity. Elsevier, 1994.

    Google Scholar 

  • R.E. Dutton, R.L. Goetz, S. Shamasundar, and S.L. Semiatin. The ring test for p/m materials. Trans. ASME. J. Manufacturing Science and Engng, 120:764–769, 1998.

    Article  Google Scholar 

  • R.J. Green. A plasticity theory for porous solids. Int. J. Mech. Sciences, 14:215–224, 1972.

    Article  MATH  Google Scholar 

  • Z. Gronostajski. The constitutive equations for fern analysis. J. Materials Processing Technology, 106:40–44, 2000.

    Article  Google Scholar 

  • A.L. Gurson. Continuum theory of ductile rupture by void nucleation and growth: Part 1 yield criteria and flow rules for porous ductile media. Trans. ASME. J. Engng Materials and Technology, 99:2–15, 1977.

    Article  Google Scholar 

  • D. Harris and E.F. Grekova. A hyperbolic well-posed model for the flow of granular materials. J. Engng Math., 52:107–135, 2005.

    MATH  MathSciNet  Google Scholar 

  • R. Hill. The Mathematical Theory of Plasticity. Clarendon Press, 1950.

    Google Scholar 

  • A.Yu. Ishlinskii. On planar flow of sand. Ukrainian Mathematical Journal, 6:430–441, 1954.

    Google Scholar 

  • J. A. Kamenjarzh. Limit Analysis of Solids and Structures. CRC Press, 1996.

    Google Scholar 

  • M.F. Kanninen and C.H. Popelar. Advanced Fracture Mechanics. Oxford University Press, 1985.

    Google Scholar 

  • A.S. Kao, H.A. Kuhn, W.A. Spitzig, and O. Richmond. Influence of super-imposed hydrostatic pressure on bending fracture and formability of a low carbon steel containing globular sulfides. Trans. ASME. J. Engng Materials and Technology, 112:26–30, 1990.

    Article  Google Scholar 

  • E. Lyamina, S. Alexandrov, D. Grabco, and O. Shikimaka. An approach to prediction of evolution of material properties in the vicinity of frictional interfaces in metal forming. Key Engineering Materials, 345–346:741–744, 2007.

    Article  Google Scholar 

  • E.A. Lyamina. Application of the method of characteristics to finding the strain rate intensity factor. In Computational plasticity: fundamentals and applications — COUPLAS IX, part 2, pages 919–923. 2007.

    Google Scholar 

  • S.P. Moylan, S. Kompella, S. Chandrasekar, and T.N. Farris. A new approach for studying mechanical properties of thin surface layers affected by manufacturing processes. Trans. ASME. J. Manifacturing Science and Engng, 125:310–315, 2003.

    Article  Google Scholar 

  • J. Ostrowska-Maciejewska and D. Harris. Three-dimensional constitutive equations for rigid/perfectly plastic granular materials. Math. Proc Cambridge Phil. Soc, 108:153–169, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  • D.W.A. Rees. Basic Engineering Plasticity. Butterworth-Heinemann, 2006.

    Google Scholar 

  • S.M. Roberts, F.R. Hall, A.V. Bael, P. Hartley, I. Pillinger, C.E.N. Sturgess, P.V. Houtte, and E. Aernoudt. Benchmark tests for 3-d, elasto-plastic, finite-element codes for the modeling of metal forming processes. J. Materials Processing Technology, 34:61–68, 1992.

    Article  Google Scholar 

  • R.T. Shield. Plastic flow in a converging conical channel. J. Mech. Phys. Solids, 3:246–258, 1955.

    Article  MathSciNet  Google Scholar 

  • S. Shima and M. Oyane. Plasticity theory for porous materials. Int. J. Mech. Sciences, 18:285–291, 1976.

    Article  Google Scholar 

  • V.V. Sokolovskii. Equations of plastic flow in surface layer (in russ.). Prikladnaya Matematika i Mechanika, 20:328–334, 1956.

    MathSciNet  Google Scholar 

  • A.J.M. Spencer. A theory of the kinematics of ideal soils under plane strain conditions. J. Mech. Phys. Solids, 12:337–351, 1964.

    Article  MATH  MathSciNet  Google Scholar 

  • A.J.M. Spencer. A theory of the failure of ductile materials reinforced by elastic fibres. Int. J. Mech. Sciences, 7:197–209, 1965.

    Article  Google Scholar 

  • A.J.M. Spencer. Deformation of ideal granular materials. In H.G. Hopkins and M.J. Sewell, editors, Mechanics of Solids, The Rodney Hill 60th Anniversary Volume, pages 607–652. Pergamon Press, 1982.

    Google Scholar 

  • W.A. Spitzig, R.J. Sober, and O. Richmond. The effect of hydrostatic pressure on the deformation behavior of mar aging and hy-80 steels and its implications for plasticity theory. Metallurgical Trans., 7A: 1703–1710, 1976.

    Article  Google Scholar 

  • T.A. Trunina and E.A. Kokovkhin. Formation of a finely dispersed structure in steel surface layers under combined processing using hydraulic pressing. J. Machinery, Manufacture and Reliability, 37:160–162, 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 CISM, Udine

About this chapter

Cite this chapter

Alexandrov, S. (2010). Plasticity Theory of Porous and Powder Metals. In: Altenbach, H., Öchsner, A. (eds) Cellular and Porous Materials in Structures and Processes. CISM International Centre for Mechanical Sciences, vol 521. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0297-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0297-8_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0296-1

  • Online ISBN: 978-3-7091-0297-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics