Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 521))

  • 1587 Accesses

Abstract

This chapter gives in the first part a summary of some important elements in continuum mechanics, i.e. the decomposition of the stress tensor in its spherical and the deviatoric part and the use of stress invariants to describe the physical content of the stress tensor. In the next part, the elastic behaviour of isotropic materials based on generalised Hooke’s law is summarised and a notation appropriate for computer implementation is introduced. The constitutive description is then extended to plastic material behaviour and the description based on a yield condition, flow rule and hardening law is introduced. The concept of invariants is consistently applied and explained for the characterisation of yield conditions. A classical simple cubic cell model based on beams (Gibson/Ashby model) is investigated in the next chapter in order to highlight the assumptions and the derivation of the macroscopic material properties (elastic constants and yield stress). In the following, a strategy to determine the influence of the hydrostatic stress on the yield behaviour is proposed and conceptionally realised by a state of plane strain and a state of uniaxial strain. In addition, alternative ways to determine the complete set of elastic constants are shown. The last part covers the implementation of yield conditions into finite element codes. The understanding of the predictor-corrector concept is required to provide new constitutive equations in commercial computational codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • H. Altenbach, J. Altenbach, and A. Zolochevsky. Erweiterte Deformationsmodelle und Versagenskriterien der Werkstoffmechanik. Deutscher Verlag für Grundstoffindustrie, 1995.

    Google Scholar 

  • J. Altenbach and H. Altenbach. Einführung in die Kontinuumsmechanik. B.G. Teubner, 1994.

    Google Scholar 

  • H. Armen. Assumptions, models, and computational methods for plasticity. Computers and Structures, 10:161–174, 1979.

    Article  MATH  Google Scholar 

  • M.F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G. Wadley. Metal foams: a design guide. Butterworth-Heinemann, 2000.

    Google Scholar 

  • G. Backhaus. Deformationsgesetze. Akademie-Verlag, 1983.

    Google Scholar 

  • T. Belytschko, W.K. Liu, and B. Moran. Nonlinear finite elements for continua and structures. John Wiley & Sons, 2000.

    Google Scholar 

  • J. Betten. Kontinuumsmechanik: ein Lehrund Arbeitsbuch. Springer-Verlag, 2001.

    Google Scholar 

  • J. Betten. Creep Mechanics. Springer-Verlag, 2005.

    Google Scholar 

  • I.N. Bronstein and K.A. Semendjajew. Taschenbuch der Mathematik (Erg. Kap.). Verlag Harri Deutsch, 1988.

    Google Scholar 

  • W.F. Chen and D.J. Han. Plasticity for Structural Engineers. Springer-Verlag, 1988.

    Google Scholar 

  • W.F. Chen and A.F. Saleeb. Constitutive Equations for Engineering Materials. Volume 1: Elasticity and Modeling. John Wiley & Sons, 1982.

    Google Scholar 

  • L.J. Cohen and O. Ishai. The elastic properties of three-phase composites. Journal of Composite Materials, 1:390–403, 1967.

    Article  Google Scholar 

  • M.A. Crisfield. Non-linear finite element analysis of solids and structures. Vol. 2: Advanced topics. John Wiley & Sons, 2000.

    Google Scholar 

  • M.A. Crisfield. Non-linear finite element analysis of solids and structures. Vol. 1: Essentials. John Wiley & Sons, 2001.

    Google Scholar 

  • E.A. de Souza Neto, D. Peric, and D.R.J. Owen. Computational Methods for Plasticity: Theory and Applications. John Wiley & Sons, 2008.

    Google Scholar 

  • V.S. Deshpande and N.A. Fleck. Isotropic const it uitve models for metallic foams. Journal of the Mechanics and Physics of Solids, 48:1253–1283, 2000.

    Article  MATH  Google Scholar 

  • V.S. Deshpande and N.A. Fleck. Multi-axial yield behaviour of polymer foams. Acta Materialia, 49:1859–1866, 2001.

    Article  Google Scholar 

  • L.A. Feldkamp, S.A. Goldstein, A.M. Parfitt, G. Jesion, and M. Kleerekoper. The direct examination of three-dimensional bone architecture in vitro by computed tomography. Journal of Bone and Mineral Research, 4:3–10, 1989.

    Article  Google Scholar 

  • T. Fiedler, A. Öchsner, and J. Gracio. The uniaxial strain test — a simple method for the characterization of porous materials. Structural Engineering and Mechanics, 22:17–32, 2006.

    Google Scholar 

  • W. Flügge. Handbook of Engineering Mechanics. McGraw-Hill Book Company, 1962.

    Google Scholar 

  • A.H. Gent and A.G. Thomas. The deformation of foamed elastic materials. Journal of Applied Polymer Science, 1:107–113, 1959.

    Article  Google Scholar 

  • A.N. Gent and A.G. Thomas. Mechanics of foamed elastic materials. Rubber Chemistry and Technology, 36:597–610, 1963.

    Google Scholar 

  • L.J. Gibson. The mechanical behaviour of cancellous bone. Journal of Biomechanics, 18:317–328, 1985.

    Article  Google Scholar 

  • L.J. Gibson and M.F. Ashby. The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London Series A — Mathematical and Physical Sciences, 382:43–59, 1982.

    Article  Google Scholar 

  • L.J. Gibson and M.F. Ashby. Cellular Solids: Structures and Properties. Cambridge University Press, 1997.

    Google Scholar 

  • H.G. Hahn. Elastizittslehre. B.G. Teubner, 1985.

    Google Scholar 

  • Z. Hashin. The elastic moduli of heterogeneous materials. Journal of Applied Mechanics — Transactions of the ASME, 29:143–150, 1962.

    MATH  MathSciNet  Google Scholar 

  • M. Jirasek and Z.P. Bazant. Inelastic Analysis of Structures. John Wiley & Sons, 2002.

    Google Scholar 

  • S.V. Kanakkanatt. Mechanical anisotropy of open-cell foams. Journal of Cellular Plastics, 9:50–53, 1973.

    Article  Google Scholar 

  • J.H. Keyak, J.M. Meagher, H.B. Skinner, and CD. Mote. Automated three-dimensional finite element modelling of bone: A new method. Journal of Biomedical Engineering, 12:389–397, 1990.

    Article  Google Scholar 

  • V. Kolupaev. Dreidimensionales Kriechverhalten von Bauteilen aus unverstärkten Thermoplasten. Papierflieger, 2006.

    Google Scholar 

  • G. Lebon. Extended thermodynamics.In W. Muschik, editor, Non-Equilibrium Thermodynamics with Application to Solids. Springer-Verlag, 1992.

    Google Scholar 

  • J.M. Lederman. The prediction of the tensile properties of flexible foams. Journal of Applied Polymer Science, 15:693–703, 1971.

    Article  Google Scholar 

  • J. Lemaitre. A Course on Damage Mechanics. Springer-Verlag, 1996.

    Google Scholar 

  • J. Lubliner. Plasticity Theory. Macmillan Publishing Company, 1990.

    Google Scholar 

  • O. Mahrenholtz and H. Ismar. Ein modell des elastisch-plastischen Über gangsverhalten metallischer Werkstoffe. Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft, 30:138–144, 1979.

    MATH  Google Scholar 

  • O. Mahrenholtz and H. Ismar. Zum elastisch-plastischen Uber gangsverhalten metallischer Werkstoffe. Ingenieur-Archiv, 50:217–224, 1981.

    Article  MATH  Google Scholar 

  • H. Mang and G. Hofstetter. Festigkeitslehre. Springer Verlag, 2000.

    Google Scholar 

  • I.W. Marks and T.N. Gardner. The use of strain energy as a convergence criterion in the finite element modelling of bone and the effect of model geometry on stress convergence. Journal of Biomedical Engineering, 14: 474–476, 1993.

    Article  Google Scholar 

  • V.A. Matonis. Elastic behavior of low density rigid foams in structural applications. SPE Journal, 20:1024–1030, 1964.

    Google Scholar 

  • B. Moran, M. Ortiz, and C.F. Shih. A unified approach to finite deformation elastoplasticity based on the use of hyper elastic constitutive equations. International Journal for Numerical Methods in Engineering, 29:483–514, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  • E.P. Müller, P. Rüegsegger, and P. Seitz. Optimal ct settings for bone evaluations. Physics in Medicine and Biololgy, 30:401–409, 1985.

    Article  Google Scholar 

  • R. Müller and P. Rüegsegger. Three-dimensional finite element modelling of non-invasively assessed trabecular bone structures. Medical Engineering & Physics, 17:126–133, 1995.

    Article  Google Scholar 

  • G.C. Nayak and O.C. Zienkiewicz. Convenient form of stress invariants for plasticity. Journal of the Structural Division-ASCE, 98:1949–954, 1972.

    Google Scholar 

  • A. Öchsner. Experimentelle und numerische Untersuchung des elastoplastischen Verhaltens zellularer Modellwerkstoffe [Experimental and Numerical Investigations of the Elastic-Plastic Properties of Model Cellular Materials]. VDI Verlag, 2003.

    Google Scholar 

  • A. Öchsner, T. Fiedler, J. Grácio, and G. Kuhn. Experimental techniques for the investigation of the elasto-plastic transition zone of foamed materials. Advanced Engineering Materials, 8:884–889, 2006.

    Article  Google Scholar 

  • J.C. Simo and T. J. R. Hughes. Computational Inelasticity. Springer-Verlag, 1998.

    Google Scholar 

  • J.C. Simo and M. Ortiz. A unified approach to finite deformation elastoplasticity based on the use of hyper elastic constitutive equations. Computational Method Appl M, 49:221–245, 1985.

    Article  MATH  Google Scholar 

  • B. van Rietbergen, H. Weinans, R. Huiskes, and A. Odgaard. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. Journal of Biomechanics, 28:69–81, 1995.

    Article  Google Scholar 

  • J.K. Weaver and J. Chalmers. Cancellous bone: Its strength and changes with aging and an evaluation of some methods for measuring its mineral content. Journal of Bone and Joint Surgery — American Volume, 48: 289–298, 1966.

    Google Scholar 

  • P. Wriggers. Nichtlineare Finite-Element-Methoden. Springer-Verlag, 2001.

    Google Scholar 

  • M. Zyczkowski. Combined Loadings in the Theory of Plasticity. PWN — Polish Scientific Publishers, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 CISM, Udine

About this chapter

Cite this chapter

Öchsner, A. (2010). Plasticity of Three-Dimensional Foams. In: Altenbach, H., Öchsner, A. (eds) Cellular and Porous Materials in Structures and Processes. CISM International Centre for Mechanical Sciences, vol 521. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0297-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0297-8_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0296-1

  • Online ISBN: 978-3-7091-0297-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics