Skip to main content

Characterization of the Adhesive Systems in Cephalopods

  • Chapter
Book cover Biological Adhesive Systems

Abstract

Cephalopods are highly evolved invertebrates; since ancient times, they have been admired for their intelligence, their ability to change color within milliseconds and their flexible arms, equipped with suckers or hooks. The suckers are versatile, mainly used to attach mechanically (by a reduced-pressure systems with a low pressure up to 0.01 MPa) to hard or soft surfaces (Smith, 1996; Kier and Smith, 2002; Pennisi, 2002); its usage and force strength varies, from a “soft sensing” of unknown objects to a fast and forceful holding of resisting prey. The suckers also have a sensory function and are equipped with a large repertoire of numerous mechano- and chemoreceptors (Nixon and Dilly, 1977).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam W (1986) Contribution a la connaissance du genre Euprymna Steenstrup, 1887 (Mollusca, Cephalopoda). Bulletin de L’Institut Royal des Sciences Naturelles de Belgique 56: 131–136.

    Google Scholar 

  • Adams PJM and Tyler S (1980) Hopping locomotion in a nematode: functional anatomy of the caudal gland of Theristus caudasaliens sp. n. Journal of Morphology 164: 265–285.

    Article  Google Scholar 

  • Agassiz L (1847) An Introduction to the Study of Natural History in a Series of Lectures Delivered in the Hall of the College of Physicians and Surgeons, New York. Greeley & McElrath, New York.

    Google Scholar 

  • Akasaki T, Nikaido M, Tsuchiya K, Segawa S, Hasegawa M, and Okada N (2006) Extensive mitochondrial gene arrangements in coleoid Cephalopoda and their phylogenetic implications. Molecular Phylogenetics and Evolution 38(3): 648–658.

    Article  CAS  Google Scholar 

  • Appellöf A (1898) Cephalopoden von Ternate. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 24(4): 570–637.

    Google Scholar 

  • Arnold JM (1990) Embryonic development of the squid. In: Gilbert DL, Adelmann WJ, and Arnold JM (eds) Squid as Experimental Animals. Plenum Press, New York: pp 77–92.

    Google Scholar 

  • Arnold JM and Singley CT (1989) Ultrastructural changes in the cells of the Hoyle organ during hatching of the squid Loligo peali. Journal of Cephalopod Biology 1(1): 1–14.

    Google Scholar 

  • Arnold JM, Singley CT, and Williams-Arnold LD (1972) Embryonic development and post-hatching survival of the sepiolid squid Euprymna scolopes under laboratory conditions. The Veliger 14(4): 361–364.

    Google Scholar 

  • Barber VC and Wright DE (1969) The fine structure of the sensoe organs of the cephalopod mollusc Nautilus. Zeitschrift für Zellforschung 102: 293–312.

    Article  CAS  Google Scholar 

  • Barthelat F (2007) Biomimetics for next generation materials. Philosophical Transactions of the Royal Society: Series A, Mathematical, Physical and Engineering Sciences 365 (1861): 2907–2919.

    Article  CAS  Google Scholar 

  • Berry SS (1913) Some new Hawaiian cephalopods. Proceedings of the United States National Museum 45 (1996): 563–566.

    Article  Google Scholar 

  • Berry SS (1921) Cephalopods of the genera Sepiolidea, Sepiadarium, and Idiosepius. The Philippine Journal of Science 47(1): 39–55.

    Google Scholar 

  • Bidder AM (1962) Use of the tentacles, swimming and buoyancy control in the pearly Nautilus. Nature 196(4853): 451–454.

    Article  Google Scholar 

  • Bonnaud L, Boucher-Rodoni R, and Monnerot M (1996) Relationship of some coleoid cephalopods established by 3′end of the 16S rDNA and cytochrome oxidase III gene sequences comparison. American Malacological Bulletin 12(1/2): 87–90.

    Google Scholar 

  • Bonnaud L, Boucher-Rodoni R, and Monnerot M (1997) Phylogeny of Cephalopods inferred from mitochondrial DNA Sequences. Molecular Phylogenetics and Evolution 7(1): 44–54.

    Article  CAS  Google Scholar 

  • Bonnaud L, Pichon D, and Boucher-Rodoni R (2005) Molecular approach of decabrachia phylogeny: is Idiosepius definitely not a sepiolid. Phuket Marine Biological Center Research Bulletin 66: 203–212.

    Google Scholar 

  • Budelmann BU, Schipp R, and von Boletzky S (1997) Cephalopoda. In: Harrison FW and Kohn AJ (eds) Microscopic Anatomy of Invertebrates, Vol. 6A Mollusca II, 1997. Wiley-Liss, New York: pp 119–414.

    Google Scholar 

  • Carlini DB, Reece KS, and Graves JE (2000) Actin gene family evolution and the phylogeny of coleoid cephalopods (Mollusca: Cephalopoda). Molecular Biology and Evolution 17(9): 1353–1370.

    Article  CAS  Google Scholar 

  • Carlson BA (1987) Collection and aquarium maintenance of Nautilus. In:Saunders WB and Landman NH (eds) Nautilus. The Biology and Paleobiology of a Living Fossil. Plenum Press, New York: pp 563–578.

    Google Scholar 

  • Chotiyaputta C, Okutani T, and Chaitiamvong S (1991) A new pygmy cuttlefish from the Gulf of Thailand Idiosepius thailandicus n. sp. (Cephalopoda: Idiosepiidae). Venus, the Japanese Journal of Malacology 50(3): 165–174.

    Google Scholar 

  • Claes MF and Dunlap PV (2000) Aposymbiotic culture of the sepiolid squid Euprymna scolopes: role of the symbiotic bacterium Vibrio fischeri in host animal growth, development, and light organ morphogenesis. Journal of Experimental Zoology 286(3): 280–296.

    Article  CAS  Google Scholar 

  • Conrad TA (1849) Art. XVI. — Notes on shells, with description of new genera and species. Journal of the Academy of Natural Science of Philadelphia, Series 21(3): 210–214.

    Google Scholar 

  • Crick RE and Mann KO (1987) Biomineralization and systematic implications. In: Saunders WB and Landman NH (eds) Nautilus. The Biology and Paleobiology of a Living Fossil. Plenum Press, New York: pp 115–134.

    Google Scholar 

  • Cyran N, von Byern J, and Klepal W (2005) Ultrastructure of the adhesive organ of Idiosepius (Mollusca, Cephalopoda). Microscopy Conference 6. Dreiländertagung 28.08.–02.09.2005 Paul Scherrer Institut, Davos, Switzerland: p 164.

    Google Scholar 

  • Cyran N, Klepal W, and von Byern J (2008) Ultrastructural characterization of the adhesive organ of Idiosepiidae Voss, 1962 (Mollusca, Cephalopoda). In: Faber A, Weiss R, and Fuchs D (eds) 3rd International Symposium “Coleoid cephalopods through time” Musée National d’Histoire Naturelle Luxembourg, Luxembourg: pp 97–98.

    Google Scholar 

  • Cyran N, Klepal W, and von Byern J (2010) Ultrastructural characterization of the adhesive organ of Idiosepius biserialis (Voss, 1962) and Idiosepius pygmaeus (Steenstrup, 1881) (Mollusca, Cephalopoda). Journal of the Marine Biological Association of the United Kingdom: submitted.

    Google Scholar 

  • De Blainville MHD (1825) Céphalophores. Cephalophora. Manual de Malacologie et de Conchyliologie. Paris: pp 364–387.

    Google Scholar 

  • de Lamarck MC (1798) Extrait d’un Mémoire sur le genre de la séche, du calmar et du poulpe, vulgairement nommés, polypes de mer. Bulletin de la Societe Philomathique de Paris 2(17): 129–131.

    Google Scholar 

  • Dean B (1901) Notes on living Nautilus. The American Naturalist XXXV: 819–837.

    Article  Google Scholar 

  • DeMoor S, Waite JH, Jangoux M, and Flammang P (2003) Characterization of the adhesive from cuvierian tubules of the sea cucumber Holothuria forskali (Echinodermata, Holothuroidea). Marine Biotechnology 5(1): 45–57.

    Article  CAS  Google Scholar 

  • D’Orbigny ACV and de Ferussac A (1848) Histoire naturelle generale et particuliere des cephalopodes acetabuliferes, vivantes et fossiles. Libraire de L’Academie Nationale De Medecine, Paris.

    Google Scholar 

  • Fioroni P (1962) Die embryonale Entwicklung der Hautdrüsen und des Trichterorganes von Octopus vulgaris Lam. Acta Anatomica 50: 264–295.

    Article  CAS  Google Scholar 

  • Flammang P (1996) Adhesion in echinoderms. In: Jangoux M and Lawrence JM (eds) Echinoderm Studies. A.A. Balkema, Rotterdam: pp 1–60.

    Google Scholar 

  • Foster JS, Apicella MA, and McFall-Ngai MJ (2000) Vibrio fischeri Lipopolysaccharide induces developmental Apoptosis, but not complete Morphogenesis, of the Euprymna scolopes symbiotic light organ. Developmental Biology 226: 242–254.

    Article  CAS  Google Scholar 

  • Fukuda Y (1980) Observations by SEM. In: Hamada T, Obata I, and Okutani T (eds) Nautilus macromphalus in captivity — Japanese Expert Consultation on Living Nautilus. Tokai University Press, Tokyo: pp 23–33.

    Google Scholar 

  • Fukuda Y (1988) Histology of the long digital tentacles. In: Saunders WB and Landman NH (eds) Nautilus. The Biology and Paleobiology of a Living Fossil. Plenum Publishing Corporation, New York: pp 249–256.

    Google Scholar 

  • Gelder SR and Tyler S (1986) Anatomical and cytochemical studies on the adhesive organs of the ectosymbiont Histriobdella homari (Annelida: Polychaeta). Transactions of the American Microscopical Society 105: 348–356.

    Article  Google Scholar 

  • Grant RE (1833) On a new species of Sepiola (Sepiola stenodactyla) from the Mauritius, presented by C. Telfair, Esq. Proceedings of the Zoological Society of London 1: 42–43.

    Google Scholar 

  • Gray JE (1849) Cephalopoda antepedia. In: Gray JE (ed) Catalogue of the Mollusca in the Collection of the British Museum. London: pp 1–164.

    Google Scholar 

  • Greenwald L and Ward PD (1987) Buoyancy in Nautilus. In: Saunders WB and Landman NH (eds) Nautilus. The Biology and Paleobiology of a Living Fossil. Plenum Press, New York: pp 547–560.

    Google Scholar 

  • Griffin LE (1898) Notes on the anatomy of Nautilus pompilius. Zoölogical Bulletin I: 147–161.

    Google Scholar 

  • Grimpe G (1931) Teuthologische Mitteilungen XIII. Über die Cephalopoden der Sunda-Expedition Rensch. Zoologischer Anzeiger 95(5/8): 149–174.

    Google Scholar 

  • Habe T and Okutani T (1988) A new subspecies of living Nautilus (Cephalopoda; Nautiloidea) from the Sulu Sea. Venus, the Japanese Journal of Malacology 47(2): 91–94.

    Google Scholar 

  • Haesaerts D, Jangoux M, and Flammang P (2005) The attachment complex of brachiolaria lavae of the sea star Asterias rubens (Echinodermata): an ultrastructural and immunocytochemical study. Zoomorphology 124: 67–78.

    Article  Google Scholar 

  • Hanlon RT, Claes MF, Ashcraft SE, and Dunlap PV (1997) Laboratory culture of the sepiolid squid Euprymna scolopes: a model system for bacteria-animal symbiosis. Biological Bulletin 192: 364–374.

    Article  Google Scholar 

  • Haswell WA (1895) Note on certain points in the arrangement and structure of the tentaculiferous lobes in Nautilus pompilius. Proceeding of the Linnean Society of New South Wales 10 (Second series): 544–548.

    Google Scholar 

  • Hermans CO (1983) The duo-gland adhesive system. Oceanography and Marine Biology: An Annual Review 21: 283–339.

    CAS  Google Scholar 

  • House MR (1973) An analysis of Devonian Goniatite distributions. In: Hughes NF (ed) Organisms and Continents Through Time: A Symposium Volume of 23 Papers. Special papers in Palaeontology No. 12 Ed. The Palaeontological Association, London: pp 305–317.

    Google Scholar 

  • House MR (1987) Geographic distribution of Nautilus shells. In: Saunders WB and Landman NH (eds) Nautilus. The Biology and Paleobiology of a Living Fossil. Plenum Press, New York: pp 53–64.

    Google Scholar 

  • Hoyle WE (1889) VI. On a tract of modifies epithelium in the embryo of Sepia. Proceedings of the Royal Physical Society of Edinburgh X: 58–60.

    Google Scholar 

  • Hylleberg J and Nateewathana A (1991) Redescription of Idiosepius pygmaeus Steenstrup, 1881 (Cephalopoda: Idiosepiidae), with mention of additional morphological characters. Phuket Marine Biological Center Research Bulletin 55: 33–42.

    Google Scholar 

  • Iredale T (1944) Australian pearly Nautilus. The Australian Zoologist 10(3): 294–298.

    Google Scholar 

  • Jereb P and Roper CFE (2005) Cephalopods of the world — An annotated and illustrated catalogue of cephalopod species known to date. No. 4, Vol. 1: Chambered nautiluses and sepioids (Nautilidae, Sepiidae, Sepiolidae, Sepiadariidae, Idiosepiidae and Spirulidae), Food and Agriculture Organization of the United Nations, Rome.

    Google Scholar 

  • Joubin L (1894) Céphalopodes d’Amboine. Revue Suisse de Zoologie et Annales du Musèe d’Historie Naturelle de Genéve 2: 23–64.

    Google Scholar 

  • Kakinuma K, Hisanaga K, Tsukahara J, and Tabata M (1995) The predatory activity of captured Nautilus belauensis. In: Kakinuma Y (ed) Studies of Nautilus belauensis in Palau, 27th Ed. Kagoshima University, Kagoshima: pp 83–90.

    Google Scholar 

  • Kamino K (2006) Barnacles underwater attachment. In: Smith AM and Callow JA (eds) Biological Adhesives. Springer-Verlag, Heidelberg: pp 145–166.

    Chapter  Google Scholar 

  • Kasugai T (2000) Reproductive behavior of the pygmy cuttlefish Idiosepius paradoxus in an Aquarium. Venus, the Japanese Journal of Malacology 59(1): 37–44.

    Google Scholar 

  • Kier WM (1987) The functional morphology of the tentacle musculature of Nautilus pompilius. In: Saunders WB and Landman NH (eds) Nautilus. The Biology and Paleobiology of a Living Fossil. Plenum Publishing Corporation, New York: pp 257–269.

    Google Scholar 

  • Kier WM and Smith AM (2002) The structure and adhesive mechanism of Octopus suckers. Integrative and Comparative Biology 42: 1146–1153.

    Article  Google Scholar 

  • Lewis AR and Choat JH (1993) Spawning mode and reproductive output of the tropical cephalopod Idiosepius pygmaeus. Canadian Journal of Fisheries and Aquatic Sciences 50: 20–28.

    Article  Google Scholar 

  • Lightfood J (1786) A catalogue of the Portland Museum lately the property of the. Duchess Dowager of Portland deceased; which will be sold by auction by Mr Skinner & Co. on Monday the 24th of April, 1786 and the thirty-seven following days at 12 o’clock Sundays & the 5th June (the day his Majesty’s birthday is kept) excepted, at her late Dwelling-House, in Privy-Garden, Whitehall; by order of the acting executrix. Skinner & Co., London.

    Google Scholar 

  • Lindgren AR, Giribet G, and Nishiguchi MK (2004) A combined approach to the phylogeny of Cephalopoda (Mollusca). Cladistics 20: 454–486.

    Article  Google Scholar 

  • Linne C (1758) Systema naturae per regna tria naturae, secundum classes, ordines, genera, species cum characteribus, differentiis, synonymis, locis. Tomus I. Ed., 267, Laurentii Salvii, Upsala.

    Chapter  Google Scholar 

  • Luz GM and Mano JF (2009) Biomimetic design of materials and biomaterials inspired by the structure of nacre. Philosophical Transactions of the Royal Society: Series A, Mathematical, Physical and Engineering Sciences 367(1893): 1587–1605.

    Article  CAS  Google Scholar 

  • Mayer G (2005) Rigid biological systems as models for synthetic composites. Science 310(5751): 1144–1147.

    Article  CAS  Google Scholar 

  • McFall-Ngai MJ (2002) Unseen forces: the influence of bacteria on animal development. Developmental Biology 242: 1–14.

    Article  CAS  Google Scholar 

  • McFall-Ngai MJ and Montgomery MK (1990) The anatomy and morphology of the adult bacterial light organ of Euprymna scolopes berry (Cephalopoda: Sepiolidae). Biological Bulletin 179: 332–339.

    Article  Google Scholar 

  • McFall-Ngai MJ and Ruby EG (1991) Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science 254(5037): 1491–1494.

    Article  CAS  Google Scholar 

  • McFall-Ngai MJ and Ruby EG (1998) Sepiolids and vibrios: when first they meet. Bioscience 48(4): 257–265.

    Article  Google Scholar 

  • Moynihan M (1983) Notes on the behavior of Idiosepius pygmaeus (Cephalopoda: Idiosepiidae). Behavior 85: 42–57.

    Article  Google Scholar 

  • Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, and Ritchie RO (2008) Tough, bio-inspired hybrid materials. Science 322(5907): 1516–1520.

    Article  CAS  Google Scholar 

  • Muntz WRA and Wentworth SL (1995) Structure of the adhesive surface of the digital tentacles of Nautilus pompilius. Journal of the Marine Biological Association of the United Kingdom 75: 747–750.

    Article  Google Scholar 

  • Nabhitabhata J (1994) Rearing of Thai pygmy cuttlefish, Idiosepius thailandicus Chot., Okut. & Chait., I.: some biological aspects. Technical Paper, Rayong Coastal Aquaculture Station, Coastal Aquaculture Division, Department of Fisheries 13/1994, 12.

    Google Scholar 

  • Nabhitabhata J (1998) Distinctive behaviour of Thai pygmy squid, Idiosepius thailandicus Chotiyaputta, Okutani & Chaitiamvong, 1991. Phuket Marine Biological Center Special Publication 18(1): 25–40.

    Google Scholar 

  • Nateewathana A (1997) The sepiolidae (Cephalopoda) of the Andaman sea, Thailand, with description of Euprymna hyllebergi sp. nov. Phuket Marine Biological Center Special Publication 17(2): 465–481.

    Google Scholar 

  • Natsukari Y (1970) Egg-Laying behavior, embryonic development and hatched larva of the pygmy cuttlefish, Idiosepius pygmaeus paradoxus Ortmann. Bulletin of the Faculty of Fisheries, Nagasaki University 30: 15–29.

    Google Scholar 

  • Nesis K (1982) Cephalopods of the World. Translated from Russian by B.S. Levitov (ed), V.A.A.P. Copyright Agency of the UdSSR for Light and Food Industry Publishing House, Moscow, 1987 T.F.H. Publications, Inc. Ltd., for English Translation.

    Google Scholar 

  • Nesis K, Katugin ON, and Ratnikov AV (2002) Pygmy cuttlefish Idiosepius paradoxus (Ortmann, 1888) (Cephalopoda) — First record of Idiosepiidae in Russian seas. Ruthenica 12(1): 81–84.

    Google Scholar 

  • Nixon M and Dilly PN (1977) Sucker surfaces and prey capture. Symposia of the Zoological Society of London 38: 447–511.

    Google Scholar 

  • Norman MD and Lu CC (1997) Redescription of the southern dumpling squid Euprymna tasmanica and a revision of the genus Euprymna (Cephalopoda: Sepiolidae). Journal of the Marine Biological Association of the United Kingdom 77: 1109–1137.

    Article  Google Scholar 

  • Nyholm SV, Deplancke B, Gaskins HR, Apicella MA, and McFall-Ngai MJ (2002) Roles of Vibrio fischeri and nonsymbiotic bacteria in the dynamics of mucus secretion during symbiont colonization of the Euprymna scolopes light organ. Applied and Environmental Microbiology 68(10): 5113–5122.

    Article  CAS  Google Scholar 

  • Nyholm SV and McFall-Ngai MJ (2004) The winnowing: establishing the squid-vibrio symbiosis. Nature Reviews Microbiology 2(8): 632–642.

    Article  CAS  Google Scholar 

  • Ortmann A (1888) Japanische cephalopoden. Zoologische Jahrbücher 3: 639–670.

    Google Scholar 

  • Owen R (1843) XXXVII. On the structure and homology of the cephalic tentacles in the pearly Nautilus. The Annals and Magazine of Natural History Including Zoology, Botany, and Geology XII: 305–311.

    Google Scholar 

  • Packard A, Bone Q, and Hignette M (1980) Breathing and swimming movements in a captive Nautilus. Journal of the Marine Biological Association of the United Kingdom 60: 313–327.

    Article  Google Scholar 

  • Pennisi E (2002) Biology reveals new ways to hold on tight. Science 296: 250–251.

    Article  CAS  Google Scholar 

  • Pfeffer G (1884) Die Cephalopoden des Hamburger Naturhistorischen Museums. Abhandlungen aus dem Gebiet der Naturwissenschaft, herausgegeben vom Naturwissenschaftlichen Verein Hamburg 8(1): 1–30.

    Google Scholar 

  • Pontoppidan E (1755) Kraken, or Korven, the Largest Creature in the World. The Natural History of Norway: Containing, a Particular and Accurate Account of the Temperature of the Air, the Different Soils, Waters, Vegetables, Metals, Minerals, Stones, Beasts, Birds, and Fishes; Together with the Dispositions, Customs, and Manner of Living of the Inhabitants: Interspersed with Physiological Notes from Eminent Writers, and Transactions of Academies. A. Linde, London: pp 210–218.

    Google Scholar 

  • Quoy JMC and Gaimard JP (1832) Animaux Mollusques — Céphalés. Voyage de Décuvertes de L’Astrolabe Exécuté par order du Roi, pendant les années 1826-1827-1828-1829, sours le Commandement de M.J. Dumont D’Urville. Tome II. Zoologie Ed., Tastu, Paris: pp 61–90.

    Google Scholar 

  • Roeleveld MAC (1972) A review of the Sepiidae (Cephalopoda) of Southern Africa. Annals of the South African Museum 59(10): 193–313.

    Google Scholar 

  • Roeleveld MAC and Liltved WR (1985) A new species of Sepia (Cephalopoda, Sepiidae) from South Africa. Annals of the South African Museum 96(1): 1–18.

    Google Scholar 

  • Roper CFE and Young RE (1975) Vertical distribution of pelagic cephalopods. Smithsonian Contributions to Zoology 209: 1.

    Article  Google Scholar 

  • Ruth P, Schmidtberg H, Westermann B, and Schipp R (2002) The sensory epithelium of the tentacles and the rhinophore of Nautilus pompilius L. (Cephalopoda, Nautiloidea). Journal of Morphology 251(3): 239–255.

    Article  Google Scholar 

  • Santos R, Gorb SN, Jamar V, and Flammang P (2005) Adhesion of echinoderm tube feet to rough surfaces. Journal of Experimental Biology 208: 2555–2567.

    Article  Google Scholar 

  • Sasaki M (1913) Decapod cephalopods found in Japan (Sepiolidae). Zoolological Magazine Tokyo 25: 247–252.

    Google Scholar 

  • Sasaki M (1921) On an adhering habit of a pygmy cuttlefish, Idiosepius pygmaeus Steenstrup. Annotationes Zoologicae Japonenses 10(21): 209–213.

    Google Scholar 

  • Sasaki M (1929) A monograph of the dibranchiate cephalopods of the Japanese and adjacent waters. Journal of the Faculty of Agriculture, Hokkaido Imperial University, Supplementary 20: 1–357.

    Google Scholar 

  • Sato N, Awata S, and Munehara H (2009) Seasonal occurrence and sexual maturation of Japanese pygmy squid (Idiosepius paradoxus) at the northern limits of their distribution. ICES Journal of Marine Science 66: 811–815.

    Article  Google Scholar 

  • Saunders WB (1981) A new species of Nautilus from Palau. The Veliger 24(1): 1–7.

    Google Scholar 

  • Saunders WB (1987) The species of Nautilus. In: Saunders WB and Landman NH (eds) Nautilus. The Biology and Paleobiology of a Living Fossil. Plenum Press, New York: pp 35–52.

    Google Scholar 

  • Saunders WB and Spinosa C (1979) Nautilus movement and distribution in Palau, Western Caroline Islands. Science 204(4398): 1199–1201.

    Article  CAS  Google Scholar 

  • Saunders WB and Landman NH (1987) Nautilus. The Biology and Paleobiology of a Living Fossil. Plenum Press, New York.

    Google Scholar 

  • Saunders WB and Ward PD (1987) Ecology, distribution, and population characteristics of Nautilus. In: Saunders WB and Landman NH (eds) Nautilus. The Biology and Paleobiology of a Living Fossil. Plenum Press, New York: pp 137–162.

    Google Scholar 

  • Shapiro EA and Saunders WB (1987) Nautilus shell hydrostatics. In: Saunders WB and Landman NH (eds) Nautilus. The Biology and Paleobiology of a Living Fossil. Plenum Press, New York: pp 527–545.

    Google Scholar 

  • Shears J (1988) The use of a sand-coat in relation to feeding and diel activity in the sepiolid squid Euprymna scolopes. Malacologia 29(1): 121–133.

    Google Scholar 

  • Sherrard KM (2000) Cuttlebone morphology limits habitat depth in eleven species of Sepia (Cephalopoda: Sepiidae). Biological Bulletin 198(3): 404–414.

    Article  CAS  Google Scholar 

  • Shigeno S and Yamamoto M (2002) Organization of the nervous system in the pygmy cuttlefish, Idiosepius paradoxus Ortmann (Idiosepiidae, Cephalopoda). Journal of Morphology 254(1): 65–80.

    Article  Google Scholar 

  • Singley CT (1982) Histochemistry and fine structure of the ectodermal epithelium of the sepiolid squid Euprymna scolopes. Malacologia 23(1): 177–192.

    Google Scholar 

  • Singley CT (1983) Euprymna scolopes. In: Boyle PR (ed) Cephalopod Life Cycles I Species Accounts. Academic Press, New York: pp 69–74.

    Google Scholar 

  • Small A and McFall-Ngai MJ (1999) Halide peroxidase in tissues that interact with bacetria in the host squid Euprymna scolopes. Journal of Cell Biology 72: 445–457.

    CAS  Google Scholar 

  • Smith AM (1991) The role of suction in the adhesion of limpets. Journal of Experimental Biology 161: 151–169.

    Google Scholar 

  • Smith AM (1996) Cephalopod sucker design and the physical limits to negative pressure. Journal of Experimental Biology 199: 949–958.

    Google Scholar 

  • Smith AM (2002) The structure and function of adhesive gels from invertebrates. Integrative and Comparative Biology 42: 1164–1171.

    Article  CAS  Google Scholar 

  • Smith AM and Morin MC (2002) Biochemical differences between trail mucus and adhesive mucus from marsh periwinkle snails. Biological Bulletin 203: 338–346.

    Article  CAS  Google Scholar 

  • Smith AM, Quick TJ, and St. Peter RL (1999) Differences in the composition of adhesive and non-adhesive mucus from the limpet Lottia limatula. Biological Bulletin 196: 34–44.

    Article  CAS  Google Scholar 

  • Sowerby GB (1848) Monograph of the genus Nautilus. Thesaurus Conchyliorum, or Monographs of Genera of Shells, Vol. II Ed. London: pp 463–465.

    Google Scholar 

  • Steenstrup J (1875a) Hemisepius, en ny slaegt af Sepia-blaeksprutternes familie, med bemaerkninger om Sepia-formerne i almindelighed. Det Kongelige Danske Videnskabernes Selskabs skrifter, Femte Raekke, Naturvidenskabelig og mathematisk 10(VII): 465–482.

    Google Scholar 

  • Steenstrup J (1875b) Sur l’Hemisepius un genre nouveau de la famille. Det Kongelige Danske Videnskabernes Selskabs skrifter, Femte Raekke, Naturvidenskabelig og mathematisk 10:I–VI.

    Google Scholar 

  • Steenstrup J (1881) Sepiadarium and Idiosepius two new genera of the family of Sepia. With remarks on the two related forms Sepioloidea d’Orb. and Spirula Lmk. Det Kongelige Danske Videnskabernes Selskabs skrifter Raekke 6(Bd. 1): 211–242.

    Google Scholar 

  • Steenstrup J (1887) Notae Teuthologicae, 6. International Bibliography, Information, Documentation, pp 47–66.

    Google Scholar 

  • Stenzel HB (1964) Living nautilus. In: Moore RC (ed) Treatise on Invertebrate Paleontology. The University of Kansas Press & The Geological Society of America, Kansas: pp K59–K93.

    Google Scholar 

  • Strugnell J, Norman MD, Jackson J, Drummond AJ, and Cooper A (2005) Molecular phylogeny of coleoid cephalopods (Mollusca: Cephalopoda) using a multigene approach; the effect of data partitioning on resolving phylogenies in a Bayesian framework. Molecular Phylogenetics and Evolution 37(2): 426–441.

    Article  CAS  Google Scholar 

  • Suwanmala J, Szaffich CA, von Byern J, and Nabhitabhata J (2006a) Ultrastructural insights in the embryonic development of Idiosepius biserialis (Mollusca, Cephalopoda). In: Moltschaniwskyj NA, Pecl GT, Semmens J, and Jackson GD (eds) Cephalopod International Advisory Council Symposium 2006, Hobart, Tasmania: p 106.

    Google Scholar 

  • Suwanmala J, von Byern J, and Nabhitabhata J (2006b) Observation of Idiosepius pygmaeus (Cephalopoda, Idiosepiidae) at Klong Bangrong, Phuket Island, Thailand. Phuket Marine Biological Center Research Bulletin 67: 49–51.

    Google Scholar 

  • Swan ARH and Saunders WB (1987) Morphological variation in Nautilus from Papua New Guinea. In: Saunders WB and Landman NH (eds) Nautilus. The Biology and Paleobiology of a Living Fossil. Plenum Press, New York: pp 85–103.

    Google Scholar 

  • Takumiya M, Kobayashi M, Tsuneki K, and Furuya H (2005) Phylogenetic relationships among major species of Japanese coleoid cephalopods (Mollusca: Cephalopoda) using three mitochondrial DNA sequences. Zoological Science 22: 147–155.

    Article  CAS  Google Scholar 

  • Tanabe K, Hayasaka S, Saisho T, Shinomiya A, and Aoki K (1983) Morphological variation of Nautilus pompilius from the Philippines and Fiji Islands. In: Hayasaka S (ed) Studies on Nautilus pompilius and its Associated Fauna from Tanon Strait, the Philippines. 1st Ed. Kagoshima University, Kagoshima: pp 9–21.

    Google Scholar 

  • Tanabe K, Hayasaka S, and Tsukahara J (1985) Morphological analysis of Nautilus pompilius. In: Hayasaka S (ed) Marine Ecological Studies on the Habitat of Nautilus Pompilius in the Environs of Viti Levu, Fiji. 4th Ed. Kagoshima University, Kagoshima: pp 38–49.

    Google Scholar 

  • Teichert C and Matsumoto T (1987) The ancestry of the genus Nautilus. In: Saunders WB and Landman NH (eds) Nautilus. The Biology and Paleobiology of a Living Fossil. Plenum Press, New York: pp 25–32.

    Google Scholar 

  • Thompson DW (1910) Historia animalium. In: Ross D (ed) The works of Aristotle. Book IV, At the Clarendon Press, Oxford: pp 486a–633a.

    Google Scholar 

  • Tompsett DH (1939) Sepia, XXXIInd Ed. The University Press, Liverpool.

    Google Scholar 

  • Tracey SR, Steer MA, and Pecl GT (2003) Life history traits of the temperature mini-maximalist Idiosepius notoides (Cephalopoda:Sepioidea). Journal of the Marine Biological Association of the United Kingdom 83: 1297–1300.

    Article  Google Scholar 

  • Tyler S and Rieger GE (1980) Adhesive organs of the Gastrotricha I. Duo-Gland organs. Zoomorphologie 95: 1–15.

    Article  Google Scholar 

  • Verrill AE (1881) The Cephalopods of the North-Eastern Coast of America Part II. The smaller Cephalopods, including the “Squids” and the Octopi, with other allied Forms. Transactions of the Connecticut Academy of Arts and Sciences VI: 259–446.

    Google Scholar 

  • von Boletzky S and Roeleveld MAC (2000) “Ventral adhesion” to hard substrates: a thigmotactic response in sepiid cuttlefish (Mollusca, Cephalopoda). Vie Milieu 50(1): 59–64.

    Google Scholar 

  • von Byern J and Klepal W (2006) Adhesive mechanisms in cephalopods: a review. Biofouling 22(5): 329–338.

    Article  Google Scholar 

  • von Byern J and Grunwald I (2008) Glue components in Idiosepius (Mollusca, Cephalopoda). In: Gelpey JC, Hamers RJ, Muralt P, and Orme CA (eds) From Biological Materials to Biomimetic Material Synthesis, Material Research Society Spring Meeting 2008 March 24–28, San Francisco, USA: p 645.

    Google Scholar 

  • von Byern J and Klepal W (2010) Re-evaluation of taxonomic characters of Idiosepius (Cephalopoda, Mollusca). Malacologica 52(1): 43–65.

    Article  Google Scholar 

  • von Byern J, Nürnberger S, and Shigeno S (2005) Distribution pattern of a minimalist — New records for Idiosepius biserialis (Idiosepiidae, Cephalopoda). In: Kostak M and Marek J (eds) 2nd International Symposium “Coleoid cephalopods through time” 26.–28.09.2005, Institute of Geology and Palaeontology, Faculty of Science, Charles University of Prague, Prague, Czech Republic: pp 38–43.

    Google Scholar 

  • von Byern J, Shigeno S, Klepal W, and Kasugai T (2006) Postem-bryonic development of the adhesive organ in Idiosepius under artificial conditions. In: Moltschaniwskyj NA, Pecl GT, Semmens J, and Jackson GD (eds) Cephalopod International Advisory Council Symposium 2006, Hobart, Tasmania: p 54.

    Google Scholar 

  • von Byern J, Rudoll L, Cyran N, and Klepal W (2008) Histochemical characterization of the adhesive organ of three Idiosepius spp. species. Biotechnic & Histochemistry 83(1): 29–46.

    Article  CAS  Google Scholar 

  • von Byern J, Söller R, and Steiner G (2010) Phylogenetic characterization of the genus Idiosepius (Cephalopoda; Idiosepiidae). in preparation.

    Google Scholar 

  • von Orelli M (1959) Über das Schlüpfen von Octopus vulgaris, Sepia officinalis und Loligo vulgaris. Revue Suisse de Zoologie 66(18): 330–343.

    Google Scholar 

  • Voss GL (1962) South African cephalopods. Transaction of the Royal Society of South Africa 36(4): 245–272.

    Article  Google Scholar 

  • Voss GL (1963) Cephalopods of the Philippine Islands. United States National Museum Bulletin 234: 1–180.

    Article  Google Scholar 

  • Voss GL (1977) Present status and new trends in cephalopod systematics. Symposia of the Zoological Society of London 38: 49–60.

    Google Scholar 

  • Ward PD (1988) In Search of Nautilus. Simon & Schuster Trade Division, New York.

    Google Scholar 

  • Ward PD (2008) Nautilus: Chamber of secrets. New Scientist Magazine 2650: 40–43.

    Google Scholar 

  • Ward PD and Greenwald L (1981) Chamber refilling in Nautilus. Journal of the Marine Biological Association of the United Kingdom 62: 469–475.

    Article  Google Scholar 

  • Ward PD and Saunders WB (1997) Allonautilus: a new genus of living nautiloid cephalopod and its bearing on phylogeny of the nautilida. Journal of Paleontology 71(6): 1054–1064.

    Google Scholar 

  • Ward PD, Stone R, Westermann G, and Martin A (1977) Note on animal weight, cameral fluids, swimming speed, and color polymorphism of the cephalopod Nautilus pompilius in the Fiji Islands. Paleobiology 3: 377–388.

    Google Scholar 

  • Ward PD, Carlson BA, Weekly M, and Brumbaugh B (1984) Remote telemetry of daily vertical and horizontal movement of Nautilus in Palau. Nature 309: 248–250.

    Article  Google Scholar 

  • Willey A (1898a) The adhesive tentacles of Nautilus, with some notes on its pericardium and spermatophores. Quarterly Journal of Microscopical Science 40: 207–209.

    Google Scholar 

  • Willey A (1898b) The pre-ocular and post-ocular tentacles and osphradia of Nautilus. Quarterly Journal of Microscopical Science 40: 197–201.

    Google Scholar 

  • Willey A (1902) Contribution to the natural history of the pearly Nautilus. In: Willey A (ed) Zoological results based on material from New Britain, New Guinea, loyalty islands and elsewhere collected during the years 1895, 1896 and 1897 Part VI. University Press, Cambridge: pp 691–830.

    Google Scholar 

  • Wintrebert P (1928) L’Eclosion par digestion de la coque chez les poissons, les amphibiens et les céphalopodes dibranchiaux décapodes. Comptes rendus de l’Association des Anatomistes Nancy 1928: 496–503.

    Google Scholar 

  • Woodruff DS, Carpenter MP, Saunders WB, and Ward PD (1987) Genetic variation and phylogeny in Nautilus. In: Saunders WB and Landman NH (eds) Nautilus. The Biology and Paleobiology of a Living Fossil. Plenum Press, New York: pp 65–83.

    Google Scholar 

  • Yamamoto M (1988) Normal embryonic stages of the pygmy cuttlefish, Idiosepius pygmaeus paradoxus Ortmann. Zoological Science 5: 989–998.

    Google Scholar 

  • Yamamoto M, Shimazaki Y, and Shigeno S (2003) Atlas of the embryonic brain in the pygmy squid, Idiosepius paradoxus. Zoological Science 20(2): 163–179.

    Article  Google Scholar 

  • Young RE, Vecchione M, and Donovan DT (1998) The evolution of coleoid cephalopods and their present biodiversity and ecology. In: Payne AIL, Lipinski MR, Clarke MR, and Roeleveld MAC (eds) Cephalopod Biodiversity, Ecology and Evolution, 20th Ed. South African Journal of Marine Science: pp 393–420.

    Google Scholar 

  • Yung Ko Ching M (1930) Contribution á l’etude cytologique de l’ovogenese, du developpment et de quelques organes chez les cephalopodes. Annales de L’Institut Oceanographique 7(Fasc. 8): 300–364.

    Google Scholar 

  • Zhengzhi D (2010) On the geographical distribution of recent Nautilus. Marine Scienes 4: 52–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this chapter

Cite this chapter

Cyran, N. et al. (2010). Characterization of the Adhesive Systems in Cephalopods. In: von Byern, J., Grunwald, I. (eds) Biological Adhesive Systems. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0286-2_5

Download citation

Publish with us

Policies and ethics