Skip to main content

Wet Performance of Biomimetic Fibrillar Adhesives

  • Chapter
Biological Adhesive Systems

Abstract

A number of legged organisms have evolved sophisticated, fibrillar attachment schemes that exhibit functional qualities highly desirable in synthetic reversible adhesives: substrate compliance, high adhesive strength, and sustained performance over many attach/release cycles (Creton and Gorb, 2007; Peattie, 2008). While a number of early synthetic mimics of fibrillar adhesives as well as the biological systems that inspired them are effective in ambient or low humidity environments, they are less effective in highly humid environments and function poorly in the presence of excess water. Yet, adhesives that function well under wet conditions are greatly desired for numerous industrial and consumer adhesive applications, as well as for biomedical uses (Yanik, 2009). This review chapter summarizes recent efforts in adapting or combining features of multiple biological adhesive strategies to develop biomimetic systems with enhanced wet adhesive performance. On-going research and development efforts are anticipated to lead to practical implementations of wet adhesives for a variety of uses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arzt E, Gorb SN, and Spolenak R (2003) From micro to nano contacts in biological attachment devices. Proceedings of the National Academy of Sciences of the United States of America 100(19): 10603–10606.

    Article  CAS  Google Scholar 

  • Autumn K and Gravish N (2008) Gecko adhesion: evolutionary nanotechnology. Philosophical Transactions of the Royal Society: Series A, Mathematical, Physical and Engineering Sciences 366(1870): 1575–1590.

    Article  CAS  Google Scholar 

  • Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, and Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405(6787): 681–685.

    Article  CAS  Google Scholar 

  • Autumn K, Sitti M, Liang YA, Peattie AM, Hansen WR, Sponberg S, Kenny TW, Fearing R, Israelachvili JN, and Full RJ (2002) Evidence for van der Waals adhesion in gecko setae. Proceedings of the National Academy of Sciences of the United States of America 99(19): 12252–12256.

    Article  CAS  Google Scholar 

  • Barnes WJP (2007) Functional morphology and design constraints of smooth adhesive pads. MRS Bulletin 32(6): 479–485.

    Article  CAS  Google Scholar 

  • Gottlieb Binder GmbH, Germany, Fastening System. http://www.binder.biz/range.

    Google Scholar 

  • Creton C and Gorb SN (2007) Issue theme: sticky feet: from animals to materials. MRS Bulletin 32(6): 466–508.

    Article  Google Scholar 

  • Cutkosky MR and Kim S (2009) Design and fabrication of multimaterial structures for bioinspired robots. Philosophical Transactions of the Royal Society: Series A, Mathematical, Physical and Engineering Sciences 367(1894): 1799–1813.

    Article  CAS  Google Scholar 

  • del Campo A and Arzt E (2007) Design parameters and current fabrication approaches for developing bioinspired dry adhesives. Macromolecular Bioscience 7(2): 118–127.

    Article  Google Scholar 

  • Federle W, Barnes WJ, Baumgartner W, Drechsler P, and Smith JM (2006) Wet but not slippery: boundary friction in tree frog adhesive toe pads. Journal of the Royal Society Interface 3(10): 689–697.

    Article  CAS  Google Scholar 

  • Ge L, Sethi S, Ci L, Ajayan PM, and Dhinojwala A (2007) Carbon nanotube-based synthetic gecko tapes. Proceedings of the National Academy of Sciences of the United States of America 104(26): 10792–10795.

    Article  CAS  Google Scholar 

  • Geim AK, Dubonos SV, Grigorieva IV, Novoselov KS, Zhukov AA, and Shapoval SY (2003) Microfabricated adhesive mimicking gecko foot-hair. Nature Materials 2(7): 461–463.

    Article  CAS  Google Scholar 

  • Glass P, Cheung E, and Sitti M (2008) A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives. IEEE Transactions on Bio-medical Engineering 55(12): 2759–2767.

    Article  Google Scholar 

  • Glass P, Chung H, Washburn NR, and Sitti M (2009) Enhanced reversible adhesion of dopamine methacrylamide-coated elastomer microfibrillar structures under wet conditions. Langmuir 25(12): 6607–6612.

    Article  CAS  Google Scholar 

  • Glassmaker NJ, Jagota A, Hui CY, Noderer WL, and Chaudhury MK (2007) Biologically inspired crack trapping for enhanced adhesion. Proceedings of the National Academy of Sciences of the United States of America 104(26): 10786–10791.

    Article  CAS  Google Scholar 

  • Gorb SN (2008) Biological attachment devices: exploring nature’s diversity for biomimetics. Philosophical Transactions of the Royal Society: Series A, Mathematical, Physical and Engineering Sciences 366: 1557–1574.

    Article  Google Scholar 

  • Gorb SN, Varenberg M, Peressadko A, and Tuma J (2007) Biomimetic mushroom-shaped fibrillar adhesive microstructure. Journal of the Royal Society Interface 4: 271–275.

    Article  CAS  Google Scholar 

  • Hansen WR and Autumn K (2005) Evidence for self-cleaning in gecko setae. Proceedings of the National Academy of Sciences of the United States of America 102(2): 385–389.

    Article  CAS  Google Scholar 

  • Huber G, Mantz H, Spolenak R, Mecke K, Jacobs K, Gorb SN, and Arzt E (2005) Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proceedings of the National Academy of Sciences of the United States of America 102(45): 16293–16296.

    Article  CAS  Google Scholar 

  • Israelachvili JN (1992) Intermolecular and Surface Forces: With Applications to Colloidal and Biological Systems (Colloid Science), 2nd Ed. Academic Press, San Diego.

    Google Scholar 

  • Jeong HE, Lee JK, Kim HN, Moon SH, and Suh KY (2009) A non-transferring dry adhesive with hierarchical polymer nanohairs. Proceedings of the National Academy of Sciences of the United States of America 106(14): 5639–5644.

    Article  CAS  Google Scholar 

  • Jeong HE and Suh KY (2009) Nanohairs and nanotubes: efficient structural elements for gecko-inspired artificial dry adhesives. Nano Today 4: 335–346.

    Article  CAS  Google Scholar 

  • Lee H, Scherer NF, and Messersmith PB (2006) Single-molecule mechanics of mussel adhesion. Proceedings of the National Academy of Sciences 103: 12999–13003.

    Article  CAS  Google Scholar 

  • Lee H, Lee BP, and Messersmith PB (2007) A reversible wet/dry adhesive inspired by mussel and geckos. Nature Letters 448: 338–341.

    Article  CAS  Google Scholar 

  • Lee J and Fearing RS (2008) Contact self-cleaning of synthetic gecko adhesive from polymer microfibers. Langmuir 24(19): 10587–10591.

    Article  CAS  Google Scholar 

  • Lee J, Majidi C, Schubert B, and Fearing RS (2008) Slidinginduced adhesion of stiff polymer microfibre arrays. I. Macroscale behaviour. Journal of the Royal Society Interface 5(25): 835–844.

    Article  Google Scholar 

  • Mahdavi A, Ferreira L, Sundback C, Nichol JW, Chan EP, Carter DJ, Bettinger CJ, Patanavanich S, Chignozha L, Ben Joseph E, Galakatos A, Pryor H, Pomerantseva I, Masiakos PT, Faquin W, Zumbuehl A, Hong S, Borenstein J, Vacanti J, Langer R, and Karp JM (2008) A biodegradable and biocompatible gecko-inspired tissue adhesive. Proceedings of the National Academy of Sciences of the United States of America 105(7): 2307–2312.

    Article  CAS  Google Scholar 

  • Majumder A, Ghatak A, and Sharma A (2007) Microfluidic adhesion induced by subsurface microstructures. Science 318(5848): 258–261.

    Article  CAS  Google Scholar 

  • Papov VV, Diamond TV, Biemann K, and Waite JH (1995) Hydroxyarginine-containing polyphenolic proteins in the adhesive plaques of the marine mussel Mytilus edulis. Journal of Biological Chemistry 270(34): 20183–20192.

    Article  CAS  Google Scholar 

  • Peattie AM (2009) Functional demands of dynamic biological adhesion: an integrative approach. Journal of Comparative Physiology B 179: 231–239.

    Article  Google Scholar 

  • Qu L, Dai L, Stone M, Xia Z, and Wang ZL (2008) Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 322(5899): 238–242.

    Article  CAS  Google Scholar 

  • Ruibal R and Ernst V (1965) The structure of the digital setae of lizards. Journal of Morphology 117(3): 271–293.

    Article  CAS  Google Scholar 

  • Schubert B, Majidi C, Groff RE, Baek S, Bush B, Maboudian R, and Fearing RS (2007) Towards friction and adhesion from high modulus microfiber arrays. Journal of Experimental Biology 21: 1297–1315.

    CAS  Google Scholar 

  • Spolenak R, Gorb SN, and Arzt E (2005a) Adhesion design maps for bio-inspired attachment systems. Acta Biomaterialia 1: 5–13.

    Article  Google Scholar 

  • Spolenak R, Gorb SN, Gao H, and Arzt E (2005b) Effects of contact shape on the scaling of biological attachments. Proceedings of the Royal Society of London: Series A, Mathematical, Physical and Engineering Sciences 461: 305–319.

    Article  Google Scholar 

  • Sun W, Neuzil P, Kustandi TS, Oh S, and Samper VD (2005) The nature of the gecko lizard adhesive force. Biophysical Journal 89(2): L14–L17.

    Article  CAS  Google Scholar 

  • Varenberg M and Gorb SN (2008) A beetle-inspired solution for underwater adhesion. Journal of the Royal Society Interface 5(20): 383–385.

    Article  CAS  Google Scholar 

  • Varenberg M and Gorb SN (2009) Hexagonal surface micropattern for dry and wet friction. Advanced Materials 21: 483–486.

    Article  CAS  Google Scholar 

  • Waite JH and Qin X (2001) Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry 40(9): 2887–2893.

    Article  CAS  Google Scholar 

  • Waite JH and Tanzer ML (1981) Polyphenolic substance of mytilus edulis: novel adhesive containing L-dopa and hydroxyproline. Science 212(4498): 1038–1040.

    Article  CAS  Google Scholar 

  • Wang Y, Ameer GA, Sheppard BJ, and Langer R (2002) A tough biodegradable elastomer. Nature Biotechnology 20(6): 602–606.

    Article  CAS  Google Scholar 

  • Yamaguchi T, Gravish N, Autumn K, and Creton C (2009) Microscopic modeling of the dynamics of frictional adhesion in the gecko attachment system. Journal of Physical Chemistry B 113(12): 3622–3628.

    Article  CAS  Google Scholar 

  • Yanik MF (2009) Towards gecko-feet-inspired bandages. Trends in Biotechnology 27(1): 1–2.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this chapter

Cite this chapter

Lau, K.H.A., Messersmith, P.B. (2010). Wet Performance of Biomimetic Fibrillar Adhesives. In: von Byern, J., Grunwald, I. (eds) Biological Adhesive Systems. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0286-2_19

Download citation

Publish with us

Policies and ethics