Skip to main content

Biodegradable (Meth)acrylate-based Adhesives for Surgical Applications

  • Chapter
  • 2874 Accesses

Abstract

The use of adhesives in surgery is an old but mostly unfulfilled dream (Donkerwolcke et al., 1998). Compared to conventional bonding techniques employed in surgery today like stitching, fixing with screws, pins, and plates, gluing has several advantages because it represents a fast and uncomplicated technique that causes no or only slight injuries of surrounding tissue and enables a homogenous load distribution between bonded materials (Rimpler, 1996). If such an adhesive would be gradually self-degrading in the body, newly formed tissue could replace the adhesive during the healing process and a complete regeneration of the damaged tissue would be possible. A gradual degradation of the adhesive would also maintain the necessary bonding strength within the tissue repair period and finally no foreign material would remain in the body.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Artzi N, Shazly T, Baker AB, Bon A, and Edelmann ER (2009) Aldehyde-amine chemistry enables modulated biosealants with tissue-specific adhesion. Advanced Materials 21: 3339–3403.

    Article  Google Scholar 

  • Bachet J, Goudot B, Dreyfus G, Banfi C, Ayle NA, Aota M, Brodaty D, Dubois C, Delentdecker P, and Guilmet D (1997) The proper use of glue: a 20-year experience with the GRF glue in acute aortic dissection. Journal of Cardiac Surgery 12(Suppl 2): 243–253.

    CAS  Google Scholar 

  • Benton JA, DeForest CA, Vivekanandan V, and Anseth KS (2009) Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function. Tissue Engineering Part A 15(11): 3221–3230.

    Article  CAS  Google Scholar 

  • Berdahl JP, Johnson CS, Proia AD, Grinstaff MW, and Kim T (2009) Comparison of sutures and dendritic polymer adhesives for corneal laceration repair in an in vivo chicken model. Archives of Ophthalmology 127(4): 442–447.

    Article  CAS  Google Scholar 

  • Berndt HO and Rimpler M (1991a) Klebstoffe für die Humanmedizin Teil 2: Untersuchung von Peptidklebern auf ihre Verwendbarkeit in biologischen Systemen. Adhäsion 35: 34–37.

    CAS  Google Scholar 

  • Berndt HO and Rimpler M (1991b) Klebstoffe für die Humanmedizin. Teil I. Peptoplaste, Synthese eines neuen resorbierbaren Klebstoffsystems. Adhäsion 35: 23–27.

    CAS  Google Scholar 

  • Carnahan MA, Middleton C, Kim J, Kim T, and Grinstaff MW (2002) Hybrid dendritic-linear polyester-ethers for in situ photopolymerization. Journal of the American Chemical Society 124(19): 5291–5293.

    Article  CAS  Google Scholar 

  • Chao HH and Torchiana DF (2003) BioGlue: albumin/glutaral-dehyde sealant in cardiac surgery. Journal of Cardiac Surgery 18(6): 500–503.

    Article  Google Scholar 

  • Degoricija L, Johnson CS, Wathier M, Kim T, and Grinstaff MW (2007) Photo cross-linkable Biodendrimers as ophthalmic adhesives for central lacerations and penetrating keratoplasties. Investigative Ophthalmology & Visual Science 48(5): 2037–2042.

    Article  Google Scholar 

  • Donkerwolcke M, Burny F, and Muster D (1998) Tissues and bone adhesives — historical aspects. Biomaterials 19(16): 1461–1466.

    Article  CAS  Google Scholar 

  • Ennker IC, Ennker J, Schoon D, Schoon HA, Rimpler M, and Hetzer R (1994) Formaldehyde-free collagen glue in experimental lung gluing. Annals of Thoracic Surgery 57(6): 1622–1627.

    Article  CAS  Google Scholar 

  • Ferreira P, Coelho JF, and Gil MH (2008) Development of a new photocrosslinkable biodegradable bioadhesive. International Journal of Pharmaceutics 352(1-2): 172–181.

    Article  CAS  Google Scholar 

  • Grossterlinden L, Janssen A, Schmitz N, Priemel M, Pogoda P, Amling M, Rueger JM, and Linhart W (2006) Deleterious tissue reaction to an alkylene bis(dilactoyl)-methacrylate bone adhesive in long-term follow up after screw augmentation in an ovine model. Biomaterials 27(18): 3379–3386.

    Article  CAS  Google Scholar 

  • Heiss C, Hahn N, Wenisch S, Alt V, Pokinskyj P, Horas U, Kilian O, and Schnettler R (2005) The tissue response to an alkylene bis(dilactoyl)-methacrylate bone adhesive. Biomaterials 26(12): 1389–1396.

    Article  CAS  Google Scholar 

  • Heiss C, Kraus R, Schluckebier D, Stiller AC, Wenisch S, and Schnettler R (2006) Bone adhesives in trauma and orthopedic surgery. European Journal of Trauma 2: 141–148.

    Article  Google Scholar 

  • Heiss C, Kraus R, Peters F, Henn W, Schnabelrauch M, Berg A, Pautzsch T, Weisser J, and Schnettler R (2009) Development of a bioresorbable self-hardening bone adhesive based on a composite consisting of polylactide methacrylates and beta-tricalcium phosphate. Journal of Biomedical Materials Research Part B: Applied Biomaterials 90(1): 55–66.

    CAS  Google Scholar 

  • Ifkovits JL and Burdick JA (2007) Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Engineering 13(10): 2369–2385.

    Article  CAS  Google Scholar 

  • Ignatius AA, Augat P, Hollstein E, Schorlemmer S, Peraus M, Pokinskyj P, and Claes L (2005) Biocompatibility and functionality of the degradable polymer alkylene bis(dilactoyl)-methacrylate for screw augmentation in vivo. Journal of Biomedical Materials Research PartB: Applied Biomaterials 75(1): 128–136.

    Article  Google Scholar 

  • Jayabalan M, Thomas V, and Rajesh PN (2001) Polypropylene fumarate/phloroglucinol triglycidyl methacrylate blend for use as partially biodegradable orthopaedic cement. Biomaterials 22(20): 2749–2757.

    Article  CAS  Google Scholar 

  • Kharenko EA, Larionova NI, and Demina NB (2009) Mucoadhesive drug delivery systems (review). Pharmaceutical Chemistry Journal 43(4): 200–208.

    Article  CAS  Google Scholar 

  • Lee BP, Dalsin JL, and Messersmith PB (2006) Biomimetic adhesive polymers based on mussel adhesive proteins. In: Smith AM and Callow JA (eds) Biological Adhesives. Springer-Verlag, Heidelberg: pp 257–278.

    Chapter  Google Scholar 

  • Lewis G (1997) Properties of acrylic bone cement: state of the art review. Journal of Biomedical Materials Research 38(2): 155–182.

    Article  CAS  Google Scholar 

  • Li C, Sajiki T, Nakayama Y, Fukui M, and Matsuda T (2003) Novel visible-light-induced photocurable tissue adhesive composed of multiply styrene-derivatized gelatin and poly(ethylene glycol) diacrylate. Journal of Biomedical Materials Research Part B: Applied Biomaterials 66(1): 439–446.

    Google Scholar 

  • Li Q, Williams CG, Sun DD, Wang J, Leong K, and Elisseeff JH (2004) Photocrosslinkable polysaccharides based on chondroitin sulfate. Journal of Biomedical Materials Research Part A 68(1): 28–33.

    Google Scholar 

  • MacGillivray TE (2003) Fibrin sealants and glues. Journal of Cardiac Surgery 18(6): 480–485.

    Article  Google Scholar 

  • Martens P, Holland T, and Anseth KS (2002) Synthesis and characterization of degradable hydrogels formed from acrylate modified poly(vinyl alcohol) macromers. Polymer 43(2): 6093–6100.

    Article  CAS  Google Scholar 

  • Miki D, Dastgheib K, Kim T, Pfister-Serres A, Smeds KA, Inoue M, Hatchell DL, and Grinstaff MW (2002) A photopolymerized sealant for corneal lacerations. Cornea 21(4): 393–399.

    Article  Google Scholar 

  • Mitha MK and Jayabalan M (2009) Studies on biodegradable and crosslinkable poly(castor oil fumarate)/poly(propylene fumarate) composite adhesive as a potential injectable biomaterial. Journal of Materials Science: Materials in Medicine 20(Suppl 1):S203–S211.

    Article  CAS  Google Scholar 

  • Mo X, Iwata H, Matsuda S, and Ikada Y (2000) Soft tissue adhesive composed of modified gelatin and polysaccharides. Journal of Biomaterials Science, Polymer Edition 11(4): 341–351.

    Article  CAS  Google Scholar 

  • Moller S, Weisser J, Bischoff S, and Schnabelrauch M (2007) Dextran and hyaluronan methacrylate based hydrogels as matrices for soft tissue reconstruction. Biomolecular Engineering 24(5): 496–504.

    Article  Google Scholar 

  • Nivasu VM, Reddy TT, and Tammishetti S (2004) In situ polymerizable polyethyleneglycol containing polyesterpolyol acrylates for tissue sealant applications. Biomaterials 25(16): 3283–3291.

    Article  CAS  Google Scholar 

  • Oelker AM and Grinstaff MW (2008) Ophthalmic adhesives: a materials chemistry perspective. Journal of Materials Chemistry 18: 2521–2536.

    Article  CAS  Google Scholar 

  • Prestwich GD and Kuo JW (2008) Chemically-modified HA for therapy and regenerative medicine. Current Pharmaceutical Biotechnology 9(4): 242–245.

    Article  CAS  Google Scholar 

  • Reece TB, Maxey TS, and Kron IL (2001) A prospectus on tissue adhesives. American Journal of Surgery 182(Suppl 2): 40S–44S.

    Article  CAS  Google Scholar 

  • Rimpler M (1996) Gluing — a challenge in surgery. International Journal of Adhesion and Adhesives 16: 10–20.

    Article  Google Scholar 

  • Ritter W (1986) Surgical adhesive system for hard body tissues. USA Patent No. 4,626,310 (DE 3229635).

    Google Scholar 

  • Roller MB and Bezwada R (1996) Liquid and low melt absorbable copolymers and their blends — synthesis and rheological characterization. T34-Analytical Techniques for Improved Medical Device Design, Vol. III, pp 2848–2851.

    Google Scholar 

  • Sandner B, Steurich S, and Gopp U (1997) Synthesis and characterization of oligo(lactone) methacrylates. Polymer 38(10): 2515–2522.

    Article  CAS  Google Scholar 

  • Sawhney AS, Poff B, Powell M, Messier K, Doherty E, Yao F, Enscore DJ, and Jarett PK (1998) Bioabsorbable synthetic hydrogel as a surgical lung sealant. Fall Meeting August 23–27, 1998 Polymer Materials: Science and Engineering, Vol. 79. Boston, Massachusettes: p 256.

    CAS  Google Scholar 

  • Schnabelrauch M and Vogt S (1999) Biologisch abbaubares Kompositmaterial (Biologically degradable composite material). Germany Patent No. DE19939403.

    Google Scholar 

  • Schnabelrauch M, Vogt S, Larcher Y, and Wilke I (2002) Biodegradable polymer networks based on oligolactide macromers: synthesis, properties and biomedical applications. Biomolecular Engineering 19(2-6): 295–298.

    Article  CAS  Google Scholar 

  • Schnabelrauch M, Vogt S, and Reif D (2003) Bioresorbierbares Kompositmaterial. Germany Patent No. 10355992.

    Google Scholar 

  • Shalaby SW and Shalaby WSW (2004) Cyanoacrylate-based systems as tissue adhesives. In: Shalaby SW and Burg KL (eds) Absorbable and Biodegradable Polymers (Advances in Polymeric Biomaterials Series), 1st Ed. CRC Press, Boca Raton: pp 59–75.

    Google Scholar 

  • Sierra DH (1993) Fibrin sealant adhesive systems: a review of their chemistry, material properties and clinical applications. Journal of Biomaterials Applications 7(4): 309–352.

    Article  CAS  Google Scholar 

  • Smeds KA, Pfister-Serres A, Miki D, Dastgheib K, Inoue M, Hatchell DL, and Grinstaff MW (2001) Photocrosslinkable polysaccharides for in situ hydrogel formation. Journal of Biomedical Materials Research 54(1): 115–121.

    Article  CAS  Google Scholar 

  • Storey RF, Warren SC, Allison CJ, Wiggins JS, and Puckett AD (1993) Synthesis of bioabsorbable networks from methacrylate-endcapped polyesters. Polymer 34(20): 4365–4372.

    Article  CAS  Google Scholar 

  • Sung HW, Huang DM, Chang WH, Huang RN, and Hsu JC (1999) Evaluation of gelatin hydrogel crosslinked with various cross-linking agents as bioadhesives: in vitro study. Journal of Biomedical Materials Research 46(4): 520–530.

    Article  CAS  Google Scholar 

  • Vauthier C, Dubernet C, Fattal E, Pinto-Alphandary H, and Couvreur P (2003) Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Advanced Drug Delivery Reviews 55(4): 519–548.

    Article  CAS  Google Scholar 

  • Vernon B, Tirelli N, Bachi T, Haldimann D, and Hubbell JA (2003) Water-borne, in situ crosslinked biomaterials from phase-segregated precursors. Journal of Biomedical Materials Research Part A 64(3): 447–456.

    Google Scholar 

  • Vogt S, Larcher Y, Beer B, Wilke I, and Schnabelrauch M (2002) Fabrication of highly porous scaffold materials based on functionalized oligolactides and preliminary results on their use in bone tissue engineering. European Cells & Materials Journal 4: 30–38.

    CAS  Google Scholar 

  • Vogt S, Berger S, Wilke I, Larcher Y, Weisser J, and Schnabelrauch M (2005) Design of oligolactone-based scaffolds for bone tissue engineering. Bio-Medical Materials and Engineering 15(1-2): 73–85.

    CAS  Google Scholar 

  • Wang DA, Varghese S, Sharma B, Strehin I, Fermanian S, Gorham J, Fairbrother DH, Cascio B, and Elisseeff JH (2007) Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. Nature Materials 6(5): 385–392.

    Article  CAS  Google Scholar 

  • Wang N, Wu XS, Lujan-Upton H, Donahue E, and Siddiqui A (1997) Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid oligomers: I. Synthesis and characterization. Journal of Biomaterials Science, Polymer Edition 8(12): 905–917.

    Article  CAS  Google Scholar 

  • Wang S, Lu L, and Yaszemski MJ (2006) Bone-tissue-engineering material poly(propylene fumarate): correlation between molecular weight, chain dimensions, and physical properties. Biomacromolecules 7(6): 1976–1982.

    Article  CAS  Google Scholar 

  • Wenz R (1998) First results with a bioresorbable bone glue. In: Walenkamp GHIM and Bakker FC (eds) Biomaterials in Surgery. Georg Thieme, Stuttgart: pp 132–135.

    Google Scholar 

  • Wenz R and Nies B (1998) Biologically resorbable polymerization products made of binding agent systems which can be hardened by radiation. Germany Patent No. WO/1998/020839 (DE19646782.9).

    Google Scholar 

  • Yüksel KÜ (2005) Protein polymers. In: Quinn JV (ed) Tissue Adhesives in Clinical Medicine, 2nd Ed. BC Decker Inc., Hamilton: pp 113–132.

    Google Scholar 

  • Zhao X, Olsen I, Li H, Gellynck K, Buxton PG, Knowles JC, Salih V, and Young AM (2010) Reactive calcium-phosphate-containing poly(ester-co-ether) methacrylate bone adhesives: chemical, mechanical and biological considerations. Acta Biomaterialia 6(3): 845–855.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this chapter

Cite this chapter

Berg, A., Peters, F., Schnabelrauch, M. (2010). Biodegradable (Meth)acrylate-based Adhesives for Surgical Applications. In: von Byern, J., Grunwald, I. (eds) Biological Adhesive Systems. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0286-2_17

Download citation

Publish with us

Policies and ethics