Skip to main content

Properties and Potential Alternative Applications of Fibrin Glue

  • Chapter

Abstract

Clot formation is an essential mechanism for wound closure and its principle is ubiquitous in the animal kingdom, comprising invertebrates such as arthropods, echinoderms, and cephalopods as well as all classes of vertebrates (Alsberg and Clark, 1908; Xu and Doolittle, 1990; Feral, 2010). The general principle of coagulation is the conversion of proteins to fibrous material by enzyme reaction in the presence of blood cells. Although the reacting partners (proteins, enzymes, and cell types) strongly differ between the animal groups, the final product always consists mainly or partly of fibrous material. Its functionality seems to rely on the formation of a gauze-like cover sealing the lesion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aho HJ, Viljanto J, Raekallio J, and Pelliniemi LJ (1983) Ultrastructural characteristics of cells in human wound collected by Cellstic device. Journal of Surgical Research 35(6): 498–506.

    CAS  Google Scholar 

  • Akassoglou K, Akpinar P, Murray S, and Strickland S (2003) Fibrin is a regulator of Schwann cell migration after sciatic nerve injury in mice. Neuroscience Letters 338(3): 185–188.

    CAS  Google Scholar 

  • Alsberg CL and Clark ED (1908) The blood clot of Limulus polyphemus. Journal of Biological Chemistry 5: 323–329.

    Google Scholar 

  • Andree C, Voigt M, Wenger A, Erichsen T, Bittner K, Schaefer D, Walgenbach KJ, Borges J, Horch RE, Eriksson E, and Stark GB (2001) Plasmid gene delivery to human keratinocytes through a fibrin-mediated transfection system. Tissue Engineering 7(6): 757–766.

    CAS  Google Scholar 

  • Anglés-Cano E (2006) Plasminogen activation, fibrinolysis, and cell proteolytic activity in antiphospholipid syndrome. In: Khamashta MA (ed) Hughes Syndrome, 2nd Ed. Springer-Verlag, London: pp 457–469.

    Google Scholar 

  • Bach TL, Barsigian C, Yaen CH, and Martinez J (1998) Endothelial cell VE-cadherin functions as a receptor for the beta15–42 sequence of fibrin. Journal of Biological Chemistry 273(46): 30719–30728.

    CAS  Google Scholar 

  • Bensaid W, Triffitt JT, Blanchat C, Oudina K, Sedel L, and Petite H (2003) A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 24(14): 2497–2502.

    CAS  Google Scholar 

  • Betz VM, Betz OB, Harris MB, Vrahas MS, and Evans CH (2008) Bone tissue engineering and repair by gene therapy. Frontiers in Bioscience 13: 833–841.

    CAS  Google Scholar 

  • Bleiziffer O, Eriksson E, Yao F, Horch RE, and Kneser U (2007) Gene transfer strategies in tissue engineering. Journal of Cellular and Molecular Medicine 11(2): 206–223.

    CAS  Google Scholar 

  • Blomback B and Okada M (1982) Fibrin gel structure and clotting time. Thrombosis Research 25(1–2): 51–70.

    CAS  Google Scholar 

  • Blomback B, Carlsson K, Hessel B, Liljeborg A, Procyk R, and Aslund N (1989) Native fibrin gel networks observed by 3D microscopy, permeation and turbidity. Biochimica et Biophysica Acta 997(1–2): 96–110.

    CAS  Google Scholar 

  • Boland ED, Wnek GE, Simpson DG, Pawlowski KJ, and Bowlin GL (2001) Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly(glycolic acid). Journal of Macromolecular Science: Pure and Applied Chemistry A 38: 1231–1243.

    Google Scholar 

  • Boland ED, Matthews JA, Pawlowski KJ, Simpson DG, Wnek GE, and Bowlin GL (2004) Electrospinning collagen and elastin: preliminary vascular tissue engineering. Frontiers in Bioscience 9: 1422–1432.

    CAS  Google Scholar 

  • Bonadio J (2000) Tissue engineering via local gene delivery: update and future prospects for enhancing the technology. Advanced Drug Delivery Reviews 44(2–3): 185–194.

    CAS  Google Scholar 

  • Bonadio J, Smiley E, Patil P, and Goldstein S (1999) Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nature Medicine 5(7): 753–759.

    CAS  Google Scholar 

  • Borges J, Torio-Padron N, Momeni A, Mueller MC, Tegtmeier FT, and Stark BG (2006) Adipose precursor cells (preadipocytes) induce formation of new vessels in fibrin glue on the newly developed cylinder chorioallantoic membrane model (CAM). Minimally Invasive Therapy & Allied Technologies 15(4): 246–252.

    Google Scholar 

  • Branski LK, Masters OE, Herndon DN, Mittermayr R, Redl H, Traber DL, Cox RA, Kita K, and Jeschke MG (2010) Pre-clinical evaluation of liposomal gene transfer to improve dermal and epidermal regeneration. Gene Therapy 17(6): 770–778.

    CAS  Google Scholar 

  • Brown LF, Lanir N, McDonagh J, Tognazzi K, Dvorak AM, and Dvorak HF (1993) Fibroblast migration in fibrin gel matrices. American Journal of Pathology 142(1): 273–283.

    CAS  Google Scholar 

  • Buchta C, Hedrich HC, Macher M, Hocker P, and Redl H (2005) Biochemical characterization of autologous fibrin sealants produced by CryoSeal and Vivostat in comparison to the homologous fibrin sealant product Tissucol/Tisseel. Biomaterials 26(31): 6233–6241.

    CAS  Google Scholar 

  • Cao Y, Sun Z, Liao L, Meng Y, Han Q, and Zhao RC (2005) Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochemical and Biophysical Research Communications 332(2): 370–379.

    CAS  Google Scholar 

  • Catelas I, Sese N, Wu BM, Dunn JC, Helgerson S, and Tawil B (2006) Human mesenchymal stem cell proliferation and osteogenic differentiation in fibrin gels in vitro. Tissue Engineering 12(8): 2385–2396.

    CAS  Google Scholar 

  • Chang MC, Wang BR, and Huang TF (1995) Characterization of endothelial cell differential attachment to fibrin and fibrinogen and its inhibition by Arg-Gly-Asp-containing peptides. Journal of Thrombosis and Haemostasis 74(2): 764–769.

    CAS  Google Scholar 

  • Chernysh IN and Weisel JW (2008) Dynamic imaging of fibrin network formation correlated with other measures of polymerization. Blood 111(10): 4854–4861.

    CAS  Google Scholar 

  • Christman KL, Fang Q, Yee MS, Johnson KR, Sievers RE, and Lee RJ (2005) Enhanced neovasculature formation in ischemic myocardium following delivery of pleiotrophin plasmid in a biopolymer. Biomaterials 26(10): 1139–1144.

    CAS  Google Scholar 

  • Ciano PS, Colvin RB, Dvorak AM, McDonagh J, and Dvorak HF (1986) Macrophage migration in fibrin gel matrices. Laboratory Investigation 54(1): 62–70.

    CAS  Google Scholar 

  • Collet JP, Park D, Lesty C, Soria J, Soria C, Montalescot G, and Weisel JW (2000) Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed: dynamic and structural approaches by confocal microscopy. Arteriosclerosis, Thrombosis, and Vascular Biology 20(5): 1354–1361.

    CAS  Google Scholar 

  • Collet JP, Nagaswami C, Farrell DH, Montalescot G, and Weisel JW (2004) Influence of gamma’ fibrinogen splice variant on fibrin physical properties and fibrinolysis rate. Arteriosclerosis, Thrombosis, and Vascular Biology 24(2): 382–386.

    CAS  Google Scholar 

  • Cooper AV, Standeven KF, and Ariens RA (2003) Fibrinogen gamma-chain splice variant gamma’ alters fibrin formation and structure. Blood 102(2): 535–540.

    CAS  Google Scholar 

  • Corbett SA and Schwarzbauer JE (1999) Requirements for alpha(5)beta(1) integrin-mediated retraction of fibronectin-fibrin matrices. Journal of Biological Chemistry 274(30): 20943–20948.

    CAS  Google Scholar 

  • Cox S, Cole M, and Tawil B (2004) Behavior of human dermal fibroblasts in three-dimensional fibrin clots: dependence on fibrinogen and thrombin concentration. Tissue Engineering 10(5–6): 942–954.

    CAS  Google Scholar 

  • De Cristofaro R and De Candia E (2003) Thrombin domains: structure, function and interaction with platelet receptors. Journal of Thrombosis and Thrombolysis 15(3): 151–163.

    Google Scholar 

  • de Maat MP and Verschuur M (2005) Fibrinogen heterogeneity: inherited and noninherited. Current Opinion in Hematology 12(5): 377–383.

    Google Scholar 

  • des Rieux A, Shikanov A, and Shea LD (2009) Fibrin hydrogels for non-viral vector delivery in vitro. Journal of Controlled Release 136(2): 148–154.

    Google Scholar 

  • Di Stasio E, Nagaswami C, Weisel JW, and Di Cera E (1998) Clregulates the structure of the fibrin clot. Biophysical Journal 75(4): 1973–1979.

    Google Scholar 

  • Doolittle RF, Spraggon G, and Everse SJ (1997) Evolution of vertebrate fibrin formation and the process of its dissolution. Ciba Foundation Symposium 212: 4–17.

    CAS  Google Scholar 

  • Farrell DH and al Mondhiry HA (1997) Human fibroblast adhesion to fibrinogen. Biochemistry 36(5): 1123–1128.

    CAS  Google Scholar 

  • Feral JP (2010) Wound healing after arm amputation in Sepia officinalis (Cephalopoda: Sepioidea). Journal of Invertebrate Pathology 52: 380–388.

    Google Scholar 

  • Ferry JD and Morrison PR (1947) Preparation and properties of serum and plasma proteins; the conversion of human fibrinogen to fibrin under various conditions. Journal of the American Chemical Society 69(2): 388–400.

    CAS  Google Scholar 

  • Formhals A (1934): Progress and apparatus for preparing artificial threads. USA Patent No. US 1,975,504.

    Google Scholar 

  • Fürst W, Banerjee A, and Redl H (2007) Comparison of structure, strength and cytocompatibility of a fibrin matrix supplemented either with tranexamic acid or aprotinin. Journal of Biomedical Materials Research Part B: Applied Biomaterials 82(1): 109–114.

    Google Scholar 

  • Gabriel DA, Muga K, and Boothroyd EM (1992) The effect of fibrin structure on fibrinolysis. Journal of Biological Chemistry 267(34): 24259–24263.

    CAS  Google Scholar 

  • Gailit J, Clarke C, Newman D, Tonnesen MG, Mosesson MW, and Clark RA (1997) Human fibroblasts bind directly to fibrinogen at RGD sites through integrin alpha(v)beta3. Experimental Cell Research 232(1): 118–126.

    CAS  Google Scholar 

  • Gandossi E, Lunven C, and Berry CN (2000) Role of clot-associated (-derived) thrombin in cell proliferation induced by fibrin clots in vitro. British Journal of Pharmacology 129(5): 1021–1027.

    CAS  Google Scholar 

  • Garcia AJ, Vega MD, and Boettiger D (1999) Modulation of cell proliferation and differentiation through substrate-dependent changes in fibronectin conformation. Molecular Biology of the Cell 10(3): 785–798.

    CAS  Google Scholar 

  • Gille J, Meisner U, Ehlers EM, Muller A, Russlies M, and Behrens P (2005) Migration pattern, morphology and viability of cells suspended in or sealed with fibrin glue: a histomorphologic study. Tissue and Cell 37(5): 339–348.

    CAS  Google Scholar 

  • Gimble JM, Katz AJ, and Bunnell BA (2007) Adipose-derived stem cells for regenerative medicine. Circulation Research 100(9): 1249–1260.

    CAS  Google Scholar 

  • Goessl A and Redl H (2005) Optimized thrombin dilution protocol for a slowly setting fibrin sealant in surgery. European Surgery 37(1): 43–51.

    Google Scholar 

  • Gorodetsky R, Vexler A, An J, Mou X, and Marx G (1998) Haptotactic and growth stimulatory effects of fibrin(ogen) and thrombin on cultured fibroblasts. Journal of Laboratory and Clinical Medicine 131(3): 269–280.

    CAS  Google Scholar 

  • Gralnick HR, Givelber H, and Abrams E (1978) Dysfibrinogenemia associated with hepatoma. Increased carbohydrate content of the fibrinogen molecule. New England Journal of Medicine 299(5): 221–226.

    CAS  Google Scholar 

  • Greiling D and Clark RA (1997) Fibronectin provides a conduit for fibroblast transmigration from collagenous stroma into fibrin clot provisional matrix. Journal of Cell Science 110(Pt 7): 861–870.

    CAS  Google Scholar 

  • Guo M, Toda K, and Grinnell F (1990) Activation of human keratinocyte migration on type I collagen and fibronectin. Journal of Cell Science 96(Pt 2): 197–205.

    CAS  Google Scholar 

  • Halvorsen YD, Franklin D, Bond AL, Hitt DC, Auchter C, Boskey AL, Paschalis EP, Wilkison WO, and Gimble JM (2001) Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Engineering 7(6): 729–741.

    CAS  Google Scholar 

  • Harlow E and Lane D (1988) Antibodies: A Laboratory Manual, 1st Ed. Cold Spring Harbor Laboratory Publications Press, New York.

    Google Scholar 

  • Hausman GJ and Richardson RL (2004) Adipose tissue angiogenesis. Journal of Animal Science 82(3): 925–934.

    CAS  Google Scholar 

  • Hiraoka N, Allen E, Apel IJ, Gyetko MR, and Weiss SJ (1998) Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell 95(3): 365–377.

    CAS  Google Scholar 

  • Ho W, Tawil B, Dunn JC, and Wu BM (2006) The behavior of human mesenchymal stem cells in 3D fibrin clots: dependence on fibrinogen concentration and clot structure. Tissue Engineering 12(6): 1587–1595.

    CAS  Google Scholar 

  • Hotary KB, Yana I, Sabeh F, Li XY, Holmbeck K, Birkedal-Hansen H, Allen ED, Hiraoka N, and Weiss SJ (2002) Matrix metalloproteinases (MMPs) regulate fibrin-invasive activity via MT1-MMP-dependent and-independent processes. Journal of Experimental Medicine 195(3): 295–308.

    CAS  Google Scholar 

  • Jiang Y, Ding G, and Lu S (2010) Behavior of dermal fibroblasts on microdot arrays yields insight into wound healing mechanisms. Molecular Biology Reports (in press).

    Google Scholar 

  • Kaibara M (1973) Dynamic viscoelastic study of the formation of fibrin networks in fibrinogen-thrombin systems and plasma. Biorheology 10(1): 61–73.

    CAS  Google Scholar 

  • Kaijzel EL, Koolwijk P, van Erck MG, van Hinsbergh VW, and de Maat MP (2006) Molecular weight fibrinogen variants determine angiogenesis rate in a fibrin matrix in vitro and in vivo. Journal of Thrombosis and Haemostasis 4(9): 1975–1981.

    CAS  Google Scholar 

  • Kaminski M and McDonagh J (1983) Studies on the mechanism of thrombin. Interaction with fibrin. Journal of Biological Chemistry 258(17): 10530–10535.

    CAS  Google Scholar 

  • Katti DS, Robinson KW, Ko FK, and Laurencin CT (2004) Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters. Journal of Biomedical Materials Research Part B: Applied Biomaterials 70(2): 286–296.

    Google Scholar 

  • Kim JP, Zhang K, Chen JD, Kramer RH, and Woodley DT (1994) Vitronectin-driven human keratinocyte locomotion is mediated by the alpha v beta 5 integrin receptor. Journal of Biological Chemistry 269(43): 26926–26932.

    CAS  Google Scholar 

  • Kim JP, Zhang K, Chen JD, Wynn KC, Kramer RH, and Woodley DT (1992) Mechanism of human keratinocyte migration on fibronectin: unique roles of RGD site and integrins. Journal of Cellular Physiology 151(3): 443–450.

    CAS  Google Scholar 

  • Kita R, Takahashi A, Kaibara M, and Kubota K (2002) Formation of fibrin gel in fibrinogen-thrombin system: static and dynamic light scattering study. Biomacromolecules 3(5): 1013–1020.

    CAS  Google Scholar 

  • Knox P, Crooks S, and Rimmer CS (1986) Role of fibronectin in the migration of fibroblasts into plasma clots. Journal of Cell Biology 102(6): 2318–2323.

    CAS  Google Scholar 

  • Kral JG and Crandall DL (1999) Development of a human adipocyte synthetic polymer scaffold. Plastic and Reconstructive Surgery 104(6): 1732–1738.

    CAS  Google Scholar 

  • Kubo M, Van de Water L, Plantefaber LC, Mosesson MW, Simon M, Tonnesen MG, Taichman L, and Clark RA (2001) Fibrinogen and fibrin are anti-adhesive for keratinocytes: a mechanism for fibrin eschar slough during wound repair. Journal of Investigative Dermatology 117(6): 1369–1381.

    CAS  Google Scholar 

  • Langer R and Vacanti JP (1993) Tissue engineering. Science 260(5110): 920–926.

    CAS  Google Scholar 

  • Lanir N Cia PS Van de WL McDonagh J Dvorak AM and Dvorak HF 1988 Macrophage migration in fibrin gel matrices. II. Effects of clotting factor XIII fibronectin and glycosamiglycan content on cell migration. Journal of Immulogy 1407 2340–2349.

    CAS  Google Scholar 

  • Laurens N, Koolwijk P, and de Maat MP (2006) Fibrin structure and wound healing. Journal of Thrombosis and Haemostasis 4(5): 932–939.

    CAS  Google Scholar 

  • Lei P, Padmashali RM, and Andreadis ST (2009) Cell-controlled and spatially arrayed gene delivery from fibrin hydrogels. Biomaterials 30(22): 3790–3799.

    CAS  Google Scholar 

  • Lim BC, Ariens RA, Carter AM, Weisel JW, and Grant PJ (2003) Genetic regulation of fibrin structure and function: complex gene-environment interactions may modulate vascular risk. The Lancet 361(9367): 1424–1431.

    CAS  Google Scholar 

  • Lin F, Ren XD, Doris G, and Clark RA (2005) Three-dimensional migration of human adult dermal fibroblasts from collagen lattices into fibrin/fibronectin gels requires syndecan-4 proteoglycan. Journal of Investigative Dermatology 124(5): 906–913.

    CAS  Google Scholar 

  • Liu CY, Nossel HL, and Kaplan KL (1979) The binding of thrombin by fibrin. Journal of Biological Chemistry 254(20): 10421–10425.

    CAS  Google Scholar 

  • Locksley RM, Killeen N, and Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104(4): 487–501.

    CAS  Google Scholar 

  • Lyon ME, Fine JS, Henderson PJ, and Lyon AW (1995) D-phenylalanyl-L-prolyl-L-arginine chloromethyl ketone (PPACK): alternative anticoagulant to heparin salts for blood gas and electrolyte specimens. Clinical Chemistry 41(7): 1038–1041.

    CAS  Google Scholar 

  • Macasev DJ, DiOrio JP, Gugerell A, Goppelt A, Gulle H, and Bittner M (2010) Cell compatibility of fibrin sealants: in vitro study with cells involved in soft tissue engineering. Journal of Biomaterials Applications (in press).

    Google Scholar 

  • MacPhee MJ, Singh MP, Brady R, Akhyani N, Liau G, Lasa C, Hue C, Best A, and Drohan W (1996) Fibrin sealant: a versatile delivery vehicle for drugs and biologics. In: Sierra DH and Saltz R (eds) Surgical Adhesives and Sealants: Current Technology and Applications. Technomic Publishing AG, Basel: pp 109–120.

    Google Scholar 

  • Maghzal GJ, Brennan SO, and George PM (2005) The sialic acid content of fibrinogen decreases during pregnancy and increases in response to fibrate therapy. Thrombosis Research 115(4): 293–299.

    CAS  Google Scholar 

  • Mann BK (2003) Biologic gels in tissue engineering. Clinics in Plastic Surgery 30(4): 601–609.

    Google Scholar 

  • Martin P (1997) Wound healing — aiming for perfect skin regeneration. Science 276: 75–81.

    CAS  Google Scholar 

  • Martinowitz U and Saltz R (1996) Fibrin sealant. Current Opinion in Hematology 3(5): 395–402.

    CAS  Google Scholar 

  • Michlits W, Mittermayr R, Schafer R, Redl H, and Aharinejad S (2007) Fibrin-embedded administration of VEGF plasmid enhances skin flap survival. Wound Repair and Regeneration 15(3): 360–367.

    Google Scholar 

  • Midwood KS, Mao Y, Hsia HC, Valenick LV, and Schwarzbauer JE (2006) Modulation of cell-fibronectin matrix interactions during tissue repair. Journal of Investigative Dermatology Symposium Proceedings 11(1): 73–78.

    CAS  Google Scholar 

  • Miranville A, Heeschen C, Sengenes C, Curat CA, Busse R, and Bouloumie A (2004) Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation 110(3): 349–355.

    CAS  Google Scholar 

  • Mooney R, Tawil B, and Mahoney M (2010) Specific fibrinogen and thrombin concentrations promote neuronal rather than glial growth when primary neural cells are seeded within plasma-derived fibrin gels. Tissue Engineering: Parts A 16(5): 1607–1619.

    CAS  Google Scholar 

  • Morton TJ, Furst W, van Griensven M, and Redl H (2009) Controlled release of substances bound to fibrin-anchors or of DNA. Drug Delivery 16(2): 102–107.

    CAS  Google Scholar 

  • Morton TJ, Nikkola L, Grasl C, Wolbank S, Moritz M, Pfeifer S, Redl H, and van Griensven M (2010) Electrospun fibrin nanofibers for the use in tissue engineering. (unpublished).

    Google Scholar 

  • Mosesson MW, DiOrio JP, Hernandez I, Hainfeld JF, Wall JS, and Grieninger G (2004) The ultrastructure of fibrinogen-420 and the fibrin-420 clot. Biophysical Chemistry 112(2–3): 209–214.

    CAS  Google Scholar 

  • Mosher DF and Johnson RB (1983) Specificity of fibronectin — fibrin cross-linking. Annals of the New York Academy of Sciences 408: 583–594.

    CAS  Google Scholar 

  • Nair CH, Shah GA, and Dhall DP (1986) Effect of temperature, pH and ionic strength and composition on fibrin network structure and its development. Thrombosis Research 42(6): 809–816.

    CAS  Google Scholar 

  • Naito M, Nomura H, and Iguchi A (1996) Migration of cultured vascular smooth muscle cells into non-crosslinked fibrin gels. Thrombosis Research 84(2): 129–136.

    CAS  Google Scholar 

  • O’Toole EA (2001) Extracellular matrix and keratinocyte migration. Clinical and Experimental Dermatology 26(6): 525–530.

    Google Scholar 

  • Pankajakshan D and Krishnan LK (2009) Design of fibrin matrix composition to enhance endothelial cell growth and extracellular matrix deposition for in vitro tissue engineering. Artificial Organs 33(1): 16–25.

    CAS  Google Scholar 

  • Peterbauer-Scherb A, Danzer M, Gabriel C, van Griensven M, Redl H, and Wolbank S (2010) In vitro adipogenesis of adipose-derived stem cells in 3D fibrin matrix of low component concentration. Journal of Tissue Engineering and Regenerative Medicine (submitted).

    Google Scholar 

  • Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Penicaud L, and Casteilla L (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109(5): 656–663.

    Google Scholar 

  • Redl H, Schlag G, and Dinges HP (1985) Vergleich zweier Fibrinkleber. Medizinische Welt 36: 769–776.

    CAS  Google Scholar 

  • Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, and March KL (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109(10): 1292–1298.

    Google Scholar 

  • Richardson TP, Murphy WL, and Mooney DJ (2001) Polymeric delivery of proteins and plasmid DNA for tissue engineering and gene therapy. Critical Reviews™ in Eukaryotic Gene Expression 11(1–3): 47–58.

    CAS  Google Scholar 

  • Ronfard V and Barrandon Y (2001) Migration of keratinocytes through tunnels of digested fibrin. Proceedings of the National Academy of Sciences USA 98(8): 4504–4509.

    CAS  Google Scholar 

  • Safford KM, Hicok KC, Safford SD, Halvorsen YD, Wilkison WO, Gimble JM, and Rice HE (2002) Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochemical and Biophysical Research Communications 294(2): 371–379.

    CAS  Google Scholar 

  • Sahni A and Francis CW (2000) Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation. Blood 96(12): 3772–3778.

    CAS  Google Scholar 

  • Sahni A, Odrljin T, and Francis CW (1998) Binding of basic fibro-blast growth factor to fibrinogen and fibrin. Journal of Biological Chemistry 273(13): 7554–7559.

    CAS  Google Scholar 

  • Sahni A, Guo M, Sahni SK, and Francis CW (2004) Interleukin-1beta but not IL-1alpha binds to fibrinogen and fibrin and has enhanced activity in the bound form. Blood 104(2): 409–414.

    CAS  Google Scholar 

  • Schense JC and Hubbell JA (1999) Cross-linking exogenous bifunctional peptides into fibrin gels with factor XIIIa. Bioconjugate Chemistry 10(1): 75–81.

    CAS  Google Scholar 

  • Schillinger U, Wexel G, Hacker C, Kullmer M, Koch C, Gerg M, Vogt S, Ueblacker P, Tischer T, Hensler D, Wilisch J, Aigner J, Walch A, Stemberger A, and Plank C (2008) A fibrin glue composition as carrier for nucleic acid vectors. Pharmaceutical Research 25(12): 2946–2962.

    CAS  Google Scholar 

  • Schlag G and Redl H (1986) Fibrin Sealant in Operative Medicine. Springer-Verlag, Berlin.

    Google Scholar 

  • Schmoekel HG, Weber FE, Seiler G, von Rechenberg B, Schense JC, Schawalder P, and Hubbell J (2004) Treatment of nonunions with nonglycosylated recombinant human bone morphogenetic protein-2 delivered from a fibrin matrix. Veterinary Surgery 33(2): 112–118.

    Google Scholar 

  • Schmoekel HG, Weber FE, Schense JC, Gratz KW, Schawalder P, and Hubbell JA (2005) Bone repair with a form of BMP-2 engineered for incorporation into fibrin cell ingrowth matrices. Biotechnology and Bioengineering 89(3): 253–262.

    CAS  Google Scholar 

  • Seo MJ, Suh SY, Bae YC, and Jung JS (2005) Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochemical and Biophysical 328(1): 258–264.

    CAS  Google Scholar 

  • Smadja DM, Basire A, Amelot A, Conte A, Bieche I, Le Bonniec BF, Aiach M, and Gaussem P (2008) Thrombin bound to a fibrin clot confers angiogenic and haemostatic properties on endothelial progenitor cells. Journal of Cellular and Molecular Medicine 12(3): 975–986.

    CAS  Google Scholar 

  • Spotnitz WD (2001) Commercial fibrin sealants in surgical care. American Journal of Surgery 182(Suppl 2): 8S–14S.

    CAS  Google Scholar 

  • Tanzi MC and Fare S (2009) Adipose tissue engineering: state of the art, recent advances and innovative approaches. Expert Review of Medical Devices 6(5): 533–551.

    Google Scholar 

  • Trentin D, Hubbell J, and Hall H (2005) Non-viral gene delivery for local and controlled DNA release. Journal of Controlled Release 102(1): 263–275.

    CAS  Google Scholar 

  • van Hinsbergh VW, Collen A, and Koolwijk P (2001) Role of fibrin matrix in angiogenesis. Annals of the New York Academy of Sciences 936: 426–437.

    Google Scholar 

  • Veklich Y, Francis CW, White J, and Weisel JW (1998) Structural studies of fibrinolysis by electron microscopy. Blood 92(12): 4721–4729.

    CAS  Google Scholar 

  • Vlodavsky I, Bar-Shavit R, Ishai-Michaeli R, Bashkin P, and Fuks Z (1991) Extracellular sequestration and release of fibroblast growth factor: a regulatory mechanism? Trends in Biochemical Sciences 16(7): 268–271.

    CAS  Google Scholar 

  • von Heimburg D, Hemmrich K, Zachariah S, Staiger H, and Pallua N (2005) Oxygen consumption in undifferentiated versus differentiated adipogenic mesenchymal precursor cells. Respiratory Physiology & Neurobiology 146(2–3): 107–116.

    Google Scholar 

  • Wagoner B, Hausman DB, and Harris RB (2006) Direct and indirect effects of leptin on preadipocyte proliferation and differentiation. American Journal of Physiology — Regulatory, Integrative and Comparative Physiology 290(6): R1557–R1564.

    CAS  Google Scholar 

  • Weisel JW and Nagaswami C (1992) Computer modeling of fibrin polymerization kinetics correlated with electron microscope and turbidity observations: clot structure and assembly are kinetically controlled. Biophysical Journal 63(1): 111–128.

    CAS  Google Scholar 

  • Weisel JW, Veklich Y, and Gorkun O (1993) The sequence of cleavage of fibrinopeptides from fibrinogen is important for protofibril formation and enhancement of lateral aggregation in fibrin clots. Journal of Molecular Biology 232(1): 285–297.

    CAS  Google Scholar 

  • Wnek GE, Carr ME, Simpson DG, and Bowlin GL (2003) Electrospinning of nanofiber fibrinogen structures. Nano Letters 3: 213–216.

    CAS  Google Scholar 

  • Wolberg AS, Monroe DM, Roberts HR, and Hoffman M (2003) Elevated prothrombin results in clots with an altered fiber structure: a possible mechanism of the increased thrombotic risk. Blood 101(8): 3008–3013.

    CAS  Google Scholar 

  • Wong C, Inman E, Spaethe R, and Helgerson S (2003) Fibrinbased biomaterials to deliver human growth factors. Journal of Thrombosis and Haemostasis 89(3): 573–582.

    CAS  Google Scholar 

  • Xu X and Doolittle RF (1990) Presence of a vertebrate fibrinogen-like sequence in an echinoderm. Proceedings of the National Academy of Sciences USA 87(6): 2097–2101.

    CAS  Google Scholar 

  • Zhao H, Ma L, Zhou J, Mao Z, Gao C, and Shen J (2008) Fabrication and physical and biological properties of fibrin gel derived from human plasma. Journal of Biomedical Materials 3(1): 015001.

    Google Scholar 

  • Zheng DN, Li QF, Lei H, Zheng SW, Xie YZ, Xu QH, Yun X, and Pu LL (2008) Autologous fat grafting to the breast for cosmetic enhancement: experience in 66 patients with long-term follow up. Journal of Plastic, Reconstructive & Aesthetic Surgery 61(7): 792–798.

    Google Scholar 

  • Zisch AH, Schenk U, Schense JC, Sakiyama-Elbert SE, and Hubbell JA (2001) Covalently conjugated VEGF — fibrin matrices for endothelialization. Journal of Controlled Release 72(1–3): 101–113.

    CAS  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, and Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering 7(2): 211–228.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this chapter

Cite this chapter

Nürnberger, S. et al. (2010). Properties and Potential Alternative Applications of Fibrin Glue. In: von Byern, J., Grunwald, I. (eds) Biological Adhesive Systems. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0286-2_16

Download citation

Publish with us

Policies and ethics