Skip to main content

Bonding Single Pollen Grains Together: How and Why?

  • Chapter
Biological Adhesive Systems

Abstract

In their early developmental stages, the anthers (the pollen-producing organs of a male flower) form a tapetum between the sporogeneous tissue and the anther wall; both the tapetal cells and the sporogeneous cells have developed originally from the same subepidermal tissue. The tapetum is of considerable physiologic significance because all the nutritional material entering the microspores and later on the pollen grains passes or originates from it. In addition, during certain periods of pollen development, it accumulates substantial quantities of reserve compounds (e.g., starch and/or protein crystals in plastids, lipid droplets inside and outside the plastids, soluble polysaccharides in the vacuoles). These stored substances successively disappear during and after the tapetum degeneration, but several characters of mature pollen grains, which are of considerable interest in pollination, depend just on these substances. For details of tapetum development and ultrastructure the reader is referred to (1993); (1997); and (2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armbruster WS (1984) The role of resin in angiosperm pollination: ecological and chemical considerations. American Journal of Botany 71: 1149–1160.

    Article  Google Scholar 

  • Barnes SH and Blackmore S (1992) Ultrastructural organization of two tapetal types in angiosperms. Archives of Histology and Cytology 55(Suppl): 217–224.

    Article  Google Scholar 

  • Boavida (2005) The making of gametes in higher plants. International Journal of Developmental Biology 49: 595–614.

    Article  CAS  Google Scholar 

  • Burns-Balogh P and Hesse M (1988) Pollen morphology of the cypripedioid orchids. Plant Systematic 158: 165–182.

    Article  Google Scholar 

  • Buzato S and Franco ALM (1992) TetrastyIis ovalis: a second case of bat-pollinated passionflower (Passifloraceae). Plant Systematics and Evolution 181: 261–267.

    Article  Google Scholar 

  • Cox PA and Knox RB (1989) Two-dimensional pollination in hydrophilous plants: convergent evolution in the genera Halodule (Cymodoceaceae), Halophila (Hydrocharitaceae), Ruppia (Ruppiaceae), and Lepilaena (Zannichelliaceae). American Journal of Botany 76: 164–175.

    Article  Google Scholar 

  • Cox PA and Tomlinson PB (1988) Pollination ecology of a sea-grass, Thalassia testudinum (Hydrocharitaceae), in St. Croix. American Journal of Botany 75: 958–965.

    Article  Google Scholar 

  • Crepat WL (1996) Timing in the evolution of derived floral characters: Upper Cretaceous (Turonian) taxa with tricolpate and tricolpate-derived pollen. Review of Palaeobotany and Palynology 90: 339–359.

    Article  Google Scholar 

  • Croat TB (1999) Pollination Biology. A Revision of Philodendron subgen. Philodendron (Araceae) of Central America. http://www.aroid.org/genera/philodendron/Contents.php and http://www.aroid.org/genera/philodendron/pollibiol.php.

    Google Scholar 

  • Dannenbaum C and Schill R (1991) Die Entwicklung der Pollentetraden und Pollinien bei den Asclepiadaceae. Bibliotheca Botanica 141: 1–138.

    Google Scholar 

  • Dickinson HG and Lewis FRS (1973) The formation of the tryphine coating the pollen grains of Raphanus, and its properties relating to the self-incompatibility system. Proceedings of the Royal Society London B: Biological Sciences 184: 149–165.

    Article  CAS  Google Scholar 

  • Dickinson HG, Elleman CJ, and Doughty J (2000) Pollen coatings — chimaeric genetics and new functions. Sexual Plant Reproduction 12: 302–309.

    Article  Google Scholar 

  • Dobson HEM (1988) Survey of pollen and pollenkitt lipids — chemical cues to flower visitors? American Journal of Botany 75: 170–182.

    Article  CAS  Google Scholar 

  • Dressler RL (1993) Phylogeny and classification of the orchid family. Cambridge University Press, Cambridge.

    Google Scholar 

  • Franchi GG and Pacini E (1996) Types of pollination and seed dispersal in mediterranean plants. Giornale botanico italiano 130: 579–585.

    Article  Google Scholar 

  • Furness CA (2008) A review of the distribution of plasmodial and invasive tapeta in eudicots. International Journal of Plant Sciences 169: 207–223.

    Article  Google Scholar 

  • Halbritter H, Hesse M, and Buchner R (1997) Pollen-connecting threads in Gymnocalycium (Cactaceae): their origin, function, and systematic relevance, with a review on pollen-clumping modes. Grana 36: 1–10.

    Article  Google Scholar 

  • Hesse M (1979) Entwicklungsgeschichte und Ultrastruktur von Pollenkitt und Exine bei nahe verwandten entomophilen und anemophilen Sippen der Salicaceae, Tiliaceae und Ericaceae. Flora 168: 540–557.

    Google Scholar 

  • Hesse M (1986) Nature, form and function of pollen-connecting threads in angiosperms. Academic Press, London.

    Google Scholar 

  • Hesse M (1993) Pollenkitt development and composition in Tilia platyphyllos (Tiliaceae) analysed by conventional and energy filtering TEM. Plant Systematics and Evolution Suppl 7: 39–52.

    Article  Google Scholar 

  • Hesse M (2009) Pollen of Anubias, Culcasia, Lagenandra and Piptospatha (Aroideae, Araceae): Functional and systematic relevance. Aroideana 32: 147–158.

    Google Scholar 

  • Hesse M and Burns-Balogh P (1984) Pollen and pollinarium morphology of Habenaria (Orchidaceae). Pollen Spores 26: 385–400.

    Google Scholar 

  • Hesse M, Halbritter H, Zetter R, Weber M, Buchner R, Frosch-Radivo A, and Ulrich S (2009) Pollen Terminology. An Illustrated Handbook. Springer-Verlag, Wien.

    Google Scholar 

  • Keri C and Zetter R (1992) Notes on the exine ultrastructure of Onagraceae and Rhododendroideae (Ericaceae). Grana 31: 119–123.

    Article  Google Scholar 

  • Knoll F (1930) Über Pollenkitt und Bestäubungsart. Zeitschrift für Botanik 23: 610–675.

    Google Scholar 

  • Knox RB and McConchie CA (1986) Structure and function of compound pollen. In: Blackmore S and Ferguson IK (eds) Pollen and Spores. Form and Function. Academic Press, London: pp 265–282.

    Google Scholar 

  • Kronestedt-Robards E (1996) Formation of the pollen-aggregating threads in Strelitzia reginae. Annals of Botany 77: 243–250.

    Article  Google Scholar 

  • Morawetz W and Waha M (1991) Zur Entstehung und Funktion pollenverbindender Fäden bei Porcelia (Annonaceae). Beiträge zur Biologie der Pflanzen 66: 145–154.

    Google Scholar 

  • Murphy DJ (2006) The extracellular pollen coat in members of the Brassicaceae: composition, biosynthesis, and functions in pollination. Protoplasma 228: 31–39.

    Article  CAS  Google Scholar 

  • Nixon KE and Crepet WL (1993) Late Cretaceous fossil flowers of ericalean affinity. American Journal of Botany 80: 616–623.

    Article  Google Scholar 

  • Pacini E (1997) Tapetum character states: analytical keys for tapetum types and activities. Canadian Journal of Botany 75: 1448–1459.

    Article  Google Scholar 

  • Pacini E and Hesse M (2005) Pollenkitt: its composition, forms and function. Flora 200: 399–415.

    Article  Google Scholar 

  • Patel V, Skvarla JJ, Ferguson IK, Graham A, and Raven PH (1985) The nature of threadlike structures and other morphological characters in Jacqueshuberia pollen (Leguminosae: Caesalpinioideae). American Journal of Botany 72: 407–413.

    Article  Google Scholar 

  • Pettitt JM (1981) Reproduction in seagrasses: pollen development in Thalassia hemprichii, Halophila stipulacea and Thalasso-dendron ciliatum. Annals of Botany 48: 609–622.

    Google Scholar 

  • Piffanelli P, Ross JHE, and Murphy DJ (1998) Biogenesis and function of the lipidic structures of pollen grains. Sexual Plant Reproduction 11: 65–80.

    Article  CAS  Google Scholar 

  • Pinheiro MC, Teixeira Ormond W, Alves de Lima H, and Rodrigues Correia MC (1995) Biologia da reproducao de Norantea brasiliensis Choisy (Marcgraviaceae). Revista Brasileira de Biologia 55(Suppl 1): 79–88.

    Google Scholar 

  • Platt KA, Huang AH, and Thompson WW (1998) Ultrastructural study of lipid accumulation in tapetal cells of Brassica napus L. cv. Westar during microsporogenesis. International Journal of Plant Sciences 159: 724–737.

    Article  CAS  Google Scholar 

  • Ressayre A, Dreyer L, Triki-Teurtroy S, Forchioni A, and Nadot S (2005) Post-meiotic cytokinesis and pollen aperture pattern ontogeny: comparison of development in four species differing in aperture pattern. American Journal of Botany 92: 576–583.

    Article  Google Scholar 

  • Reznickova SA and Dickinson HG (1982) Ultrastructural aspects of storage lipid mobilization in the tapetum of Lilium hybrida var. enchantment. Planta 155: 400–408.

    Article  Google Scholar 

  • Richter S (1929) Über den Öffnungsmechanismus der Antheren bei einigen Vertretern der Angiospermen. Planta 8: 154–184.

    Article  Google Scholar 

  • Rose MJ and Barthlott W (1995) Pollen-connecting threads in Heliconia (Heliconiaceae). Plant Systematics and Evolution 195: 61–65.

    Article  Google Scholar 

  • Sazima I, Buzato S, and Sazima M (1993) The bizarre inflorescence of Norantea brasiliensis (Marcgraviaceae): visits of hovering and perching birds. Botanica Acta 106: 507–513.

    Google Scholar 

  • Schill R and Wolter M (1986) On the presence of elastoviscin in all subfamilies of the Orchidaceae and the homology to pollenkitt. Nordic Journal of Botany 6: 321–324.

    Article  CAS  Google Scholar 

  • Shukla AK (1984) A clarification on the use of the term viscin thread in Orchidaceae. Grana 23: 127.

    Article  Google Scholar 

  • Skvarla JJ, Raven PH, and Praglowski J (1975) The evolution of pollen tetrads in Onagraceae. American Journal of Botany 62: 6–35.

    Article  Google Scholar 

  • Skvarla JJ, Raven PH, Chissoe WF, and Sharp M (1978) An ultra-structural study of viscin threads in Onagraceae. Pollen Spores 20: 5–144.

    Google Scholar 

  • Troll W (1928) Über Spathicarpa sagittifolia Schott. Flora 123: 286–316.

    Google Scholar 

  • Ubera Jimenez J, Hidalgo Fernandez P, Schlag MG, and Hesse M (1996) Pollen and tapetum development in male fertile Rosmarinus officinalis L. (Lamiaceae). Grana 34: 305–316.

    Google Scholar 

  • Vijayaraghavan MR and Shukla AK (1980) Viscin threads in Zeuxine strateumatica (Orchidaceae). Grana 19: 173–175.

    Article  Google Scholar 

  • Vogel S (1959) Organographie der Blüten kapländischer Ophrydeen mit Bemerkungen zum Koaptations-Problem. Teil I: Disinae und Satyrinae. Akademie der Wissenschaften und Literatur, Abhandlungen der mathematisch-naturwissenschaftlichen Klasse, Jahrgang 1959, Nr. 6, Verlag der Akademie der Wissenschaften und der Literatur in Mainz, in Kommission bei Franz Steiner. Verlag GmbH, Wiesbaden.

    Google Scholar 

  • Waha M (1984) Zur Ultrastruktur und Funktion pollenverbindender Fäden bei Ericaceae und anderen Angiospermenfamilien. Plant Systematics and Evolution 147: 189–203.

    Article  Google Scholar 

  • Wang Y, Zhang D, Renner SS, and Chen Z (2004) A new selfpollination mechanism. Nature 431: 30–40.

    Google Scholar 

  • Weber M (1992) The formation of pollenkitt in Apium nodiflorum (Apiaceae). Annals of Botany 70: 573–577.

    Google Scholar 

  • Willemstein SC (1987) An evolutionary basis for pollination ecology. Leiden University Press, Leiden.

    Google Scholar 

  • Wolter M, Seuffert C, and Schill R (1988) The ontogeny of pollinia and elastoviscin in the anther of Doritis pulcherrima (Orchidaceae). Nordic Journal of Botany 8: 77–88.

    Article  Google Scholar 

  • Zetter R and Hesse M (1996) The morphology of pollen tetrads and viscin threads in some Tertiary, Rhododendron-like Ericaceae. Grana 35: 285–294.

    Article  Google Scholar 

  • Zetter R, Weber M, Hesse M, and Pingen M (2002) Pollen, pollenkitt and orbicules in Craigia bronnii flower buds (Tilioideae, Malvaceae) from the Miocene of Hambach, Germany. International Journal of Plant Sciences 163: 1067–1071.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this chapter

Cite this chapter

Hesse, M. (2010). Bonding Single Pollen Grains Together: How and Why?. In: von Byern, J., Grunwald, I. (eds) Biological Adhesive Systems. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0286-2_1

Download citation

Publish with us

Policies and ethics