Skip to main content

Fundamental dislocation theory and 3D dislocation mechanics

  • Chapter
  • 2625 Accesses

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 522))

Abstract

In chapter 1 an introduction to basic dislocation properties in an elastic continuum is given. Displacements, strains, stresses and energies of straight edge and screw dislocations are compiled as well as forces on dislocations, implications of dislocation motion and aspects of dislocations in real crystals. Chapter 2 details the models of dislocation self interaction for curved dislocations including the line tension model and linear elastic self interaction. The former is essential for basic understanding, whereas the latter is the basis of accurate dislocation dynamics simulations of plasticity. In chapter 3 these models are applied for 2-dimensional dislocation glide which allow to calculate the strengthening effect of second phase particles and solute atoms in a material. Finally, aspects of 3-dimensional dislocation motion are outlined in chapter 4.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • R.J. Arsenault, S. Patu, and D.M. Esterling. Computer simulation of solid solution strengthening in fee alloys: Part i. friedel and mott limits. Met. Trans. A., 20A:1411–1418, 1989a.

    Article  Google Scholar 

  • R.J. Arsenault, S. Patu, and D.M. Esterling. Computer simulation of solid solution strengthening in fee alloys: Part ii. at absolute zero temperature. Met. Trans. A. 20A:1419–1428, 1989b.

    Article  Google Scholar 

  • D.J. Bacon. A method for describing a flexible dislocation. Phys. Stat. Sol., 23:527–538, 1967.

    Article  Google Scholar 

  • L.M. Brown. The self-stress of dislocations and the shape of extended nodes. Phil. Mag., 10:441–466, 1964.

    Article  MATH  Google Scholar 

  • L.M. Brown. A proof of lothes theorem. Phil. Mag., 15:363, 1967.

    Article  MATH  Google Scholar 

  • B. Devincre. Three dimensional stress field expressions for straight dislocation segments. Solid State Comm., 93:875–878, 1995.

    Article  Google Scholar 

  • B. Devincre and M. Condat. Model validation of a 3d simulation of dislocation dynamics: discretization and line tension effects. Acta metall. mater., 40:2629–2637, 1992.

    Article  Google Scholar 

  • B. Devincre, L.P. Kubin, C. Lemarchand, and R. Madec. Mesoscopic simulations of plastic deformation. Mat. Sci. Eng., 309–310:211–219, 2001.

    Google Scholar 

  • B. Devincre, T. Hocb, and L P. Kubin. Collinear interactions of dislocations and slip systems. Mat. Sci. Eng. A, 400–401:182–185, 2005.

    Article  Google Scholar 

  • M.S. Duesbery, N.P. Louat, and K. Sadananda. The numerical simulation of continuum dislocations. Phil. Mag., A65:311–325, 1992.

    Google Scholar 

  • J.D. Eshelby. The continuum theory of lattice defects. In F. Seitz and D. Turnbull, editors, Solid State Physics, page 79. Academic Press Inc., New York, Vol.3, 1956.

    Google Scholar 

  • A.J.E. Foreman and M.J. Makin. Dislocation movement through random arrays of obstacles. Phil. Mag., 14:911–924, 1966.

    Article  Google Scholar 

  • A.J.E. Foreman and M.J. Makin. Dislocation movement through random arrays of obstacles. Can. J. Phys., 45:511–517, 1967.

    Google Scholar 

  • J. Friedel. Dislocations. Pergamon Press, 1964.

    Google Scholar 

  • N.M. Ghoniem. Computational methods for mesoscopic, inhomogeneous plastic deformation. In D. Walgraef, C. Worner, and J. Martinez-Mardones, editors, Materials Instabilities, pages 76–158. World Scientific, Singapore, 2000.

    Google Scholar 

  • G. Gottstein. Physical Foundations of Masterials Science. Springer-Verlag, 2004.

    Google Scholar 

  • A.G. Granato, K. Luecke, J. Schlipf, and L.J. Teutonico. Entropy factors for thermally activated unpinning of dislocations. J. Appl. Phys., 35: 2732–2745, 1964.

    Article  Google Scholar 

  • K. Hanson and J.W. Morris. Limiting configuration in dislocation glide through a random array of point obstacles. J. Appl. Phys., 46:983, 1975.

    Article  Google Scholar 

  • A. Hartmaier and P. Gumbsch. Discrete dislocation dynamics simulation of crack-tip plasticity. In D. Raabe, F. Roters, F. Barlat, and L.-Q. Chen, editors, Continuum Scale Simulation of Engineering Materials, pages 413–427. Wiley-VCH, Weinheim, 2004.

    Chapter  Google Scholar 

  • J.P. Hirth and J. Lothe. Theory of Dislocations. Krieger Publishing Company, 1992.

    Google Scholar 

  • D. Hull and D.J. Bacon. Introduction to Dislocations. Pergamon Press, 1992.

    Google Scholar 

  • R.D. Isaac and V. Granato. Rate theory of dislocation motion: Thermal activation and inertial effects. Phys. Rev. B., 37:9278, 1988.

    Article  Google Scholar 

  • K.M. Jassby and T. Vreeland. Dislocation mobility in pure copper at 4.2°k. Phys. Rev., 8B:3537–3541, 1973.

    Google Scholar 

  • U.F. Kocks. Kinetics of solution hardening. Metall. Trans. A, 16:2109–2129, 1985.

    Article  Google Scholar 

  • U.F. Kocks, A.S. Argon, and M.F. Ashby. Thermodynamics and kinetics of slip. Prog. Mat. Sci., 19:1, 1975.

    Article  Google Scholar 

  • R. Labusch and R.B. Schwarz. Simulation of thermally activated dislocation motion in alloys. In Proc. of ICSMA 9, pages 47–69. 1992.

    Google Scholar 

  • I.M. Lifshitz and V.V. Slyozov. The kinetics of precipitation from supersaturated solid solutions. Phys. Chem. Solids, 19:35–50, 1961.

    Article  Google Scholar 

  • V. Mohles. Thermisch aktivierte Versetzungshewegung in Kristallen auf der Grundlage von Simulationsrechnungen. Shaker Verlag, 1997.

    Google Scholar 

  • V. Mohles. The critical resolved shear stress of single crystals with long-range ordered precipitates calculated by dislocation dynamics simulations. Mat. Sci. Eng. A, 365:144–150, 2004.

    Article  Google Scholar 

  • V. Mohles. Simulation of particle strengthening: Lattice mismatch strengthening. Mat. Sci. Eng. A, 319–321:201–205, 2001a.

    Article  Google Scholar 

  • V. Mohles. Simulation of particle strengthening: the effects of the dislocation dissociation on lattice mismatch strengthening. Mat. Sci. Eng. A, 319–321:206–210, 2001b.

    Article  Google Scholar 

  • V. Mohles. Computer simulations of the glide of dissociated dislocations in lattice mismatch strengthened materials. Mat. Sci. Eng. A, 324:190–195, 2002.

    Article  Google Scholar 

  • V. Mohles. Superposition of dispersion strengthening and size mismatch stengthening: computer simulations. Phil. Mag., 83:9–19, 2003.

    Article  Google Scholar 

  • V. Mohles. Simulation of dislocation glide in overaged precipitation-hardened crystals. Phil. Mag. A, 81:971–990, 2001c.

    Article  Google Scholar 

  • V. Mohles and B. Fruhstorfer. Computer simulations of orowan process controlled dislocation glide in particle arrangements of various randomness. Acta. Mat., 50:2503–2516, 2002.

    Article  Google Scholar 

  • V. Mohles and E. Nembach. The peak-and overstaged states of particle strengthened materials: computer simulations. Acta. Mat., 49:2405–2417, 2001.

    Article  Google Scholar 

  • V. Mohles and D. Ronnpagel. Thermal activation analysis of dislocations in obstacle fields. Comp. Mat. Sci., 7:98–102, 1996.

    Article  Google Scholar 

  • G. Monnet. Investigation of precipitation hardening by dislocation dynamics simulations. Phil. Mag., 86:5927–5941, 2006.

    Article  Google Scholar 

  • N.F. Mott and F.R.N. Nabarro. Creep and plastic flow. The Physical Society, London, 1948.

    Google Scholar 

  • E. Nadgornyi. Dislocation dynamics and mechanical properties of crystals. Progr. Mat. Sci., 31:1, 1988.

    Article  Google Scholar 

  • E. Nembach. Particle Strengthening of Metals and Alloys. John Wiley, 1996.

    Google Scholar 

  • E. Orowan. über den mechanismus des gleitvorganges. Z. Phys., 89:634, 1934.

    Article  Google Scholar 

  • M. Peach and J.S. Koehler. The forces exerted on dislocations and the stress fields produced by them. Phys. Rev., 80:436, 1950.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Peierls. The size of a dislocation. Proc. Phys. Soc, London, 52:34, 1940.

    Article  Google Scholar 

  • M. Polanyi. über eine art gitterstörung, die einen kristall plastisch machen könnte. Z. Phys., 89:660, 1934.

    Article  Google Scholar 

  • W.H. Press, S.A. Teukolsky, V.T. Vetterling, and B.P. Flannery. Numerical Recipes in C. University Press, 1992.

    Google Scholar 

  • K.W. Schwarz. Simulation of dislocations on the mesoscopic scale, i. methods and examples. J. Appl. Phys., 85:108–119, 1999.

    Article  Google Scholar 

  • R.B. Schwarz and R. Labusch. Dynamic simulation of solution hardening. J. Appl. Phys., 49:5174–5187, 1978.

    Article  Google Scholar 

  • G.I. Taylor. Proc. R. Soc, London, A145:362, 1934.

    Google Scholar 

  • V. Volterra. Sur lequilibre des corps elastiques multiplement connexes. Ann. Ecole Norm. Super., 24:401–517, 1907.

    MathSciNet  Google Scholar 

  • B. von Blanckenhagen and P. Gumbsch. Discrete dislocation dynamics simulation of thin film plastcity. In D. Raabe, F. Roters, F. Barlat, and L.-Q. Chen, editors, Continuum Scale Simulation of Engineering Materials, pages 397–412. Wiley-VCH, Weinheim, 2004.

    Chapter  Google Scholar 

  • B. von Blanckenhagen, E. Arzt, and P. Gumbsch. Discrete dislocation simulation of plastic deformation in metal thin films. Acta Metallurgica, 52: 773–784, 2004.

    Google Scholar 

  • C. Wagner. Theorie der alterung von niederschlagen durch umlosen. Elektrochem., 65:581, 1961.

    Google Scholar 

  • J. Weertman. Elementary Dislocation Theory. Oxford University Press, New York, 1992.

    Google Scholar 

  • Y. Xiang and D.J. Srolovitz. Dislocation climb effects on particle bypass simulations. Phil. Mag., 86:3937–3957, 2006.

    Article  Google Scholar 

  • H.M. Zbib, T.D. de La Rubia, M. Rhee, and J.R Hirth. 3d dislocation dynamics: stress-strain behaviour and hardening mechanisms in fee and bec metals. J. Nucl. Mater., 276:154–165, 2000a.

    Article  Google Scholar 

  • H.M. Zbib, M. Rhee, and J.R Hirth. On plastic deformation and the dynamics of 3d dislocations. Int. J. Mech. Sci., 40:113–127, 2000b.

    Article  Google Scholar 

  • H.M. Zbib, M. Hiratani, and M. Shehadeh. Multiscale discrete dislocation dynamics plasticity. In D. Raabe, F. Roters, F. Barlat, and L.-Q. Chen, editors, Continuum Scale Simulation of Engineering Materials, pages 201–229. Wiley-VCH, Weinheim, 2004.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 CISM, Udine

About this chapter

Cite this chapter

Mohles, V. (2010). Fundamental dislocation theory and 3D dislocation mechanics. In: Pippan, R., Gumbsch, P. (eds) Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics. CISM International Centre for Mechanical Sciences, vol 522. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0283-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0283-1_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0282-4

  • Online ISBN: 978-3-7091-0283-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics