Skip to main content

6S RNA: A Regulator of Transcription

  • Chapter
Regulatory RNAs in Prokaryotes

Abstract

6S RNA was first identified in total RNA from E. coli due to its high abundance [Hindley, 1967]. It was one of the first small RNAs to be sequenced [Brownlee, 1971] and it was shown to be quite stable [Lee et al., 1978]. In contrast to many other stable RNAs, its accumulation is not subject to stringent response [Ikemura and Dahlberg, 1973]. Limited sequence and structural homology to 7SL RNA led to an early hypothesis that 6S RNA was a bacterial signal recognition particle RNA (7SL or SRP RNA) involved in protein transport in eukaryotes [Walter and Blobel, 1983]. This hypothesis turned out to be incorrect as cells lacking 6S RNA did not exhibit protein secretion defects [Lee et al., 1985] and 4.5S RNA was later identified as the bacterial SRP RNA [Poritz et al., 1990; Ribes et al., 1990]. Nevertheless, these studies demonstrated that 6S RNA, encoded by the ssrS gene, is dispensable for growth [Lee et al., 1985]. In fact, cells lacking 6S RNA were found to grow indistinguishably from wild type under tested conditions, which unfortunately did not yield insight into 6S RNA function. Overexpression studies likewise did not uncover growth defects [Hsu et al., 1985]. Additional characterization of 6S RNA revealed that it existed in an RNA-protein complex, although the nature of the protein components were not readily identifiable at that time [Lee et al., 1978].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ando Y, Asari S, Suzuma S, Yamane K, Nakamura K (2002) Expression of a small RNA, BS203 RNA, from the yocI-yocJ intergenic region of Bacillus subtilis genome. FEMS Microbiol Lett 207: 29–33

    PubMed  CAS  Google Scholar 

  • Axmann IM, Holtzendorff J, Voss B, Kensche P, Hess WR (2007) Two distinct types of 6S RNA in Prochlorococcus. Gene 406: 69–78

    Article  PubMed  CAS  Google Scholar 

  • Axmann IM, Kensche P, Vogel J, Kohl S, Herzel H, Hess WR (2005) Identification of cyanobacterial non-coding RNAs by comparative genome analysis. Genome Biol 6: R73

    Article  PubMed  Google Scholar 

  • Barrick JE, Sudarsan N, Weinberg Z, Ruzzo WL, Breaker RR (2005) 6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter. RNA 11: 774–784

    Article  PubMed  CAS  Google Scholar 

  • Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277: 1453–1462

    Article  PubMed  CAS  Google Scholar 

  • Brösius J (1996) More Haemophilus and Mycoplasma genes. Science 271: 1302

    Article  PubMed  Google Scholar 

  • Brownlee GG (1971) Sequence of 6S RNA of E. coli. Nat New Biol 229: 147–149

    Article  PubMed  CAS  Google Scholar 

  • Campbell EA, Muzzin O, Chlenov M, Sun JL, Olson CA, Weinman O, Trester-Zedlitz ML, Darst SA (2002) Structure of the bacterial RNA polymerase promoter specificity sigma subunit. Mol Cell 9: 527–539

    Article  PubMed  CAS  Google Scholar 

  • Cavanagh AT, Chandrangsu P, Wassarman KW (2010) 6S RNA regulation of relA alters ppGpp levels in early stationary phase. Microbiology 156: 3791–3800

    Article  PubMed  CAS  Google Scholar 

  • Cavanagh AT, Klocko AD, Liu X, Wassarman KM (2008) Promoter specificity for 6S RNA regulation of transcription is determined by core promoter sequences and competition for region 4.2 of σ70. Mol Microbiol 67: 1242–1256

    Article  PubMed  CAS  Google Scholar 

  • del Val C, Rivas E, Torres-Quesada O, Toro N, Jiménez-Zurdo JI (2007) Identification of differentially expressed small non-coding RNAs in the legume endosymbiont Sinorhizobium meliloti by comparative genomics. Mol Microbiol 66: 1080–1091

    Article  PubMed  CAS  Google Scholar 

  • Dombroski AJ, Walter WA, Record MT Jr, Siegele DA, Gross CA (1992) Polypeptides containing highly conserved regions of transcription initiation factor σ70 exhibit specificity of binding to promoter DNA. Cell 70: 501–512

    Article  PubMed  CAS  Google Scholar 

  • Dove SL, Darst SA, Hochschild A (2003) Region 4 of sigma as a target for transcription regulation. Mol Microbiol 48: 863–874

    Article  PubMed  CAS  Google Scholar 

  • Faucher SP, Friedlander G, Livny J, Margalit H, Shuman HA (2010) Legionella pneumophila 6S RNA optimizes intracellular multiplication. Proc Natl Acad Sci USA 107: 7533–7538

    Article  PubMed  CAS  Google Scholar 

  • Gildehaus N, Neußer T, Wurm R, Wagner R (2007) Studies on the function of the riboregulator 6S RNA from E. coli: RNA polymerase binding, inhibition of in vitro transcription and synthesis of RNA-directed de novo transcripts. Nucleic Acids Res 35: 1885–1896

    Article  PubMed  CAS  Google Scholar 

  • Gralla JD (2005) Escherichia coli ribosomal RNA transcription: regulatory roles for ppGpp, NTPs, architectural proteins and a polymerase-binding protein. Mol Microbiol 55: 973–977

    Article  PubMed  CAS  Google Scholar 

  • Green RC, Darwin AJ (2004) PspG, a new member of the Yersinia enterocolitica phage shock protein regulon. J Bacteriol 186: 4910–4920

    Article  PubMed  CAS  Google Scholar 

  • Griffin BE, Baillie DL (1973) Precursors of stable RNA accumulated in a mutant of E. coli. FEBS Lett 34: 273–279

    Article  PubMed  CAS  Google Scholar 

  • Gruber TM, Gross CA (2003) Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57: 441–466

    Article  PubMed  CAS  Google Scholar 

  • Hengge-Aronis R (2002) Recent insights into the general stress response regulatory network in Escherichia coli. J Mol Microbiol Biotechnol 4: 341–346

    PubMed  CAS  Google Scholar 

  • Hindley J (1967) Fractionation of 32P-labeled ribonucleic acids on polyacrylamide gels and their characterization by fingerprinting. J Mol Biol 30: 125–136

    Article  PubMed  CAS  Google Scholar 

  • Hsu LM, Zagorski J, Wang Z, Fournier MJ (1985) Escherichia coli 6S RNA gene is part of a dualfunction transcription unit. J Bacteriol 161:1162–1170

    PubMed  CAS  Google Scholar 

  • Huang DB, Vu D, Cassiday LA, Zimmerman JM, Maher LJ 3rd Ghosh G (2003) Crystal structure of NF-?B (p50)2 complexed to a high-affinity RNA aptamer. Proc Natl Acad Sci USA 100: 9268–9273

    Article  PubMed  CAS  Google Scholar 

  • Ikemura T, Dahlberg JE (1973) Small ribonucleic acids of Escherichia coli. II. Noncoordinate accumulation during stringent control. J Biol Chem 248: 5033–5041

    PubMed  CAS  Google Scholar 

  • Ishihama A (2000) Functional modulation of Escherichia coli RNA polymerase. Annu Rev Microbiol 54: 499–518

    Article  PubMed  CAS  Google Scholar 

  • Jovanovic G, Weiner L, Model P (1996) Identification, nucleotide sequence, and characterization of PspF, the transcriptional activator of the Escherichia coli stress-induced psp operon. J Bacteriol 178: 1936–1945

    PubMed  CAS  Google Scholar 

  • Kim KS, Lee Y (2004) Regulation of 6S RNA biogenesis by switching utilization of both sigma factors and endoribonucleases. Nucleic Acids Res 32: 6057–6068

    Article  PubMed  CAS  Google Scholar 

  • Kim EY, Shin MS, Rhee JH, Choy HE (2004) Factors influencing preferential utilization of RNA polymerase containing sigma-38 in stationary-phase gene expression in Escherichia coli. J Microbiol 42: 103–110

    PubMed  CAS  Google Scholar 

  • Klauck E, Typas A, Hengge R (2007) The sS subunit of RNA polymerase as a signal integrator and network master regulator in the general stress response in Escherichia coli. Sci Prog 90: 103–127

    PubMed  CAS  Google Scholar 

  • Klocko AD, Wassarman KM (2009) 6S RNA binding to Eσ70 requires a positively charged surface of s70 region 4.2. Mol Microbiol 73: 152–164

    Article  PubMed  CAS  Google Scholar 

  • Krakow JS, von der Helm K (1970) Azotobacter RNA polymerase transitions and the release of sigma. Cold Spring Harbor Symp Quant Biol 35: 73–83

    Article  CAS  Google Scholar 

  • Küster B, Mann M (1998) Identifying proteins and post-translational modifications by mass spectrometry. Curr Opin Struct Biol 8: 393–400

    Article  PubMed  Google Scholar 

  • Lee CA, Fournier MJ, Beckwith J (1985) Escherichia coli 6S RNA is not essential for growth or protein secretion. J Bacteriol 161: 1156–1161

    PubMed  CAS  Google Scholar 

  • Lee SY, Bailey SC, Apirion D (1978) Small stable RNAs from Escherichia coli: evidence for the existence of new molecules and for a new ribonucleoprotein particle containing 6S RNA. J Bacteriol 133: 1015–1023

    PubMed  CAS  Google Scholar 

  • Li Z, Pandit S, Deutscher MP (1998) 3′ exoribonucleolytic trimming is a common feature of the maturation of small, stable RNAs in Escherichia coli. Proc Natl Acad Sci USA 95: 2856–2861

    Article  PubMed  CAS  Google Scholar 

  • Lloyd LJ, Jones SE, Jovanovic G, Gyaneshwar P, Rolfe MD, Thompson A, Hinton JC, Buck M (2004) Identification of a new member of the phage shock protein response in Escherichia coli, the phage shock protein G (PspG). J Biol Chem 279: 55707–55714

    Article  PubMed  CAS  Google Scholar 

  • Magnusson LU, Farewell A, Nyström T (2005) ppGpp: a global regulator in Escherichia coli. Trends Microbiol 13: 236–242

    Article  PubMed  CAS  Google Scholar 

  • Minakhin L, Severinov K (2003) On the role of the Escherichia coli RNA polymerase σ70 region 4.2 and α-subunit C-terminal domains in promoter complex formation on the extended-10 galP1 promoter. J Biol Chem 278: 29710–29718

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JE, Zheng D, Busby SJW, Minchin SD (2003) Identification and analysis of “extended −10” promoters in Escherichia coli. Nucleic Acids Res 31: 4689–4695

    Article  PubMed  CAS  Google Scholar 

  • Murakami KS, Masuda S, Campbell EA, Muzzin O, Darst SA (2002) Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science 296: 1285–1290

    Article  PubMed  CAS  Google Scholar 

  • Naryshkina T, Kuznedelov K, Severinov K (2006) The role of the largest RNA polymerase subunit lid element in preventing the formation of extended RNA-DNA hybrid. J Mol Biol 361: 634–643

    Article  PubMed  CAS  Google Scholar 

  • Neußer T, Gildehaus N, Wurm R, Wagner R (2008) Studies on the expression of 6S RNA from E. coli: involvement of regulators important for stress and growth adaptation. Biol Chem 389: 285–297

    Article  PubMed  Google Scholar 

  • Neußer T, Polen T, Geissen R, Wagner R (2010) Depletion of the non-coding regulatory 6S RNA in E. coli causes a surprising reduction in the expression of the translation machinery. BMC Genomics 11: 165–179

    Article  PubMed  Google Scholar 

  • Pánek J, Bobek J, Mikulík K, Basler M, Vohradsky J (2008) Biocomputational prediction of small non-coding RNAs in Streptomyces. BMC Genomics 9: 217–228

    Article  PubMed  Google Scholar 

  • Paul BJ, Ross W, Gaal T, Gourse RL (2004) rRNA transcription in Escherichia coli. Annu Rev Genet 38: 749–770

    Article  PubMed  CAS  Google Scholar 

  • Peeters E, Sass A, Mahenthiralingam E, Nelis H, Coenye T (2010) Transcriptional response of Burkholderia cenocepacia J2315 sessile cells to treatments with high doses of hydrogen peroxide and sodium hypochlorite. BMC Genomics 11: 90–108

    Article  PubMed  Google Scholar 

  • Poritz MA, Bernstein HD, Strub K, Zopf D, Wilhelm H, Walter P (1990) An E. coli ribonucleoprotein containing 4.5S RNA resembles mammalian signal recognition particle. Science 250: 1111–1117

    Article  PubMed  CAS  Google Scholar 

  • Potrykus K, Cashel M (2008) (p)ppGpp: still magical? Annu Rev Microbiol 62: 35–51

    Article  PubMed  CAS  Google Scholar 

  • Reiter NJ, Maher LJ 3rd, Butcher SE (2008) DNA mimicry by a high-affinity anti-NF-κB RNA aptamer. Nucleic Acids Res 36: 1227–1236

    Article  PubMed  CAS  Google Scholar 

  • Ribes V, Römisch K, Giner A, Dobberstein B, Tollervey D (1990) E. coli 4.5S RNA is part of a ribonucleoprotein particle that has properties related to signal recognition particle. Cell 63: 591–600

    Article  PubMed  CAS  Google Scholar 

  • Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermüller J, Reinhardt R, Stadler PF, Vogel J (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464: 250–255

    Article  PubMed  CAS  Google Scholar 

  • Shephard L, Dobson N, Unrau PJ (2010) Binding and release of the 6S transcriptional control RNA. RNA 16: 885–892

    Article  PubMed  CAS  Google Scholar 

  • Spassky A, Busby SJ, Danchin A, Buc H (1979) On the binding of tRNA to Escherichia coli RNA polymerase. Eur J Biochem 99: 187–201

    Article  PubMed  CAS  Google Scholar 

  • Suzuma S, Asari S, Bunai K, Yoshino K, Ando Y, Kakeshita H, Fujita M, Nakamura K, Yamane K (2002) Identification and characterization of novel small RNAs in the aspS-yrvM intergenic region of the Bacillus subtilis genome. Microbiol 148: 2591–2598

    CAS  Google Scholar 

  • Toulokhonov I, Landick R (2006) The role of the lid element in transcription by E. coli RNA polymerase. J Mol Biol 361: 644–658

    Article  PubMed  CAS  Google Scholar 

  • Trotochaud AE, Wassarman KM (2004) 6S RNA function enhances long-term cell survival. J Bacteriol 186: 4978–4985

    Article  PubMed  CAS  Google Scholar 

  • Trotochaud AE, Wassarman KM (2005) A highly conserved 6S RNA structure is required for regulation of transcription. Nat Struct Mol Biol 12: 313–319

    Article  PubMed  CAS  Google Scholar 

  • Trotochaud AE, Wassarman KM (2006) 6S RNA regulation of pspF transcription leads to altered cell survival at high pH. J Bacteriol 188: 3936–3943

    Article  PubMed  CAS  Google Scholar 

  • Ulvé VM, Sevin EW, Chéron A, Barloy-Hubler F (2007) Identification of chromosomal alphaproteobacterial small RNAs by comparative genome analysis and detection in Sinorhizobium meliloti strain 1021. BMC Genomics. 8: 467–483

    Article  PubMed  Google Scholar 

  • Valverde C, Livny J, Schlüter JP, Reinkensmeier J, Becker A, Parisi G (2008) Prediction of Sinorhizobium meliloti sRNA genes and experimental detection in strain 2011. BMC Genomics 9: 416–440

    Article  PubMed  Google Scholar 

  • Vogel DW, Hartmann RK, Struck JC, Ulbrich N, Erdmann VA (1987) The sequence of the 6S RNA gene of Pseudomonas aeruginosa. Nucleic Acids Res 15: 4583–4593

    Article  PubMed  CAS  Google Scholar 

  • Walter P, Blobel G (1983) Disassembly and reconstitution of signal recognition particle. Cell 34: 525–533

    Article  PubMed  CAS  Google Scholar 

  • Wassarman KM, Saecker RM (2006) Synthesis-mediated release of a small RNA inhibitor of RNA polymerase. Science 314: 1601–1603

    Article  PubMed  CAS  Google Scholar 

  • Wassarman KM, Storz G (2000) 6S RNA regulates E. coli RNA polymerase activity Cell 101: 613–623

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Sugiura M, Sugita M (1997) A novel small stable RNA, 6Sa RNA, from the cyanobacterium Synechococcus sp. strain PCC6301. FEBS Lett 416: 302–306

    Article  PubMed  CAS  Google Scholar 

  • Weiner L, Model P (1994) Role of an Escherichia coli stress-response operon in stationary-phase survival. Proc Natl Acad Sci USA 91: 2191–2195

    Article  PubMed  CAS  Google Scholar 

  • Willkomm DK, Minnerup J, Hüttenhofer A, Hartmann RK (2005) Experimental RNomics in Aquifex aeolicus: identification of small non-coding RNAs and the putative 6S RNA homolog. Nucleic Acids Res 33: 1949–1960

    Article  PubMed  CAS  Google Scholar 

  • Windbichler N, von Pelchrzim F, Mayer O, Csaszar E, Schroeder R (2008) Isolation of small RNA-binding proteins from E. coli: evidence for frequent interaction of RNAs with RNA polymerase. RNA Biol 5: 30–40

    Article  PubMed  CAS  Google Scholar 

  • Wurm R, Neußer T, Wagner R (2010) 6S RNA-dependent inhibition of RNA polymerase is released by RNA-dependent synthesis of small de novo products. Biol Chem 391: 187–196

    Article  PubMed  CAS  Google Scholar 

  • Zenkin N, Naryshkina T, Kuznedelow K, Severinov K (2006) The mechanism of DNA replication primer synthesis by RNA polymerase. Nature 439: 617–620

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Wassarman, K.M. (2012). 6S RNA: A Regulator of Transcription. In: Regulatory RNAs in Prokaryotes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0218-3_6

Download citation

Publish with us

Policies and ethics