Skip to main content

Pseudomonas Aeruginosa Small Regulatory RNAs

  • Chapter

Abstract

Pseudomonas aeruginosa (family Pseudomonaceae) is a Gram-negative, rod shaped, aerobic, motile bacterium, which is known for its ability to survive in many habitats, primarily in water, soil, and vegetation. Being an opportunistic human pathogen, P. aeruginosa is the most common Gram-negative bacterium found in nosocomial infections. It causes urinary tract infections, respiratory system infections, dermatitis, soft tissue infections, bone and joint infections, gastrointestinal infections and a variety of systemic infections, predominantly in immunosuppressed patients. Particularly patients hospitalized with cancer, AIDS, cystic fibrosis and severe burns are prone to P. aeruginosa infections (van Delden and Iglewski 1998).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babitzke P, Romeo T (2007) CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr Opin Microbiol 10: 156–163.

    Article  PubMed  CAS  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709–1712.

    Article  PubMed  CAS  Google Scholar 

  • Bordi C, Lamy MC, Ventre I, Termine E, Hachani A, Fillet S, Roche B, Bleves S, Méjean V, Lazdunski A, Filloux A (2010) Regulatory RNAs and the HptB/RetS signalling pathways finetune Pseudomonas aeruginosa pathogenesis. Mol Microbiol 76: 1427–1443.

    Article  PubMed  CAS  Google Scholar 

  • Bouvier M, Sharma CM, Mika F, Nierhaus KH, Vogel J (2008) Small RNA binding to 5′ mRNA coding region inhibits translational initiation. Mol Cell 32: 827–837.

    Article  PubMed  CAS  Google Scholar 

  • Brantl S (2007) Regulatory mechanisms employed by cis-encoded antisense RNAs. Curr Opin Microbiol 10: 102–109.

    Article  PubMed  CAS  Google Scholar 

  • Brencic A, Lory S (2009) Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA. Mol Microbiol 72: 612–632.

    Article  PubMed  CAS  Google Scholar 

  • Brencic A, McFarland KA, McManus HR, Castang S, Mogno I, Dove SL, Lory S (2009) The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol Microbiol 73: 434–445.

    Article  PubMed  CAS  Google Scholar 

  • Cooley M, Chhabra SR, Williams P (2008) N-Acylhomoserine lactone-mediated quorum sensing: a twist in the tail and a blow for host immunity. Chem Biol 15: 1141–1147.

    Article  PubMed  CAS  Google Scholar 

  • Darfeuille F, Unoson C, Vogel J, Wagner EG (2007) An antisense RNA inhibits translation by competing with standby ribosomes. Mol Cell 26: 381–392.

    Article  PubMed  CAS  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295–298.

    Article  PubMed  CAS  Google Scholar 

  • De Lay N, Gottesman S (2009) The Crp-activated small noncoding regulatory RNA CyaR (RyeE) links nutritional status to group behavior. J Bacteriol 191: 461–476.

    Article  PubMed  CAS  Google Scholar 

  • Feldman M, Bryan R, Rajan S, Scheffler L, Brunnert S, Tang H, Prince A (1998) Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect Immun 66: 43–51.

    PubMed  CAS  Google Scholar 

  • Fierro-Monti IP, Reid SJ, Woods DR (1992) Differential expression of a Clostridium acetobutylicum antisense RNA: implications for regulation of glutamine synthetase. J Bacteriol 174: 7642–7647.

    PubMed  CAS  Google Scholar 

  • Franze de Fernandez MT, Eoyang L, August JT (1968) Factor fraction required for the synthesis of bacteriophage Qbeta-RNA. Nature 219: 588–590.

    Article  PubMed  CAS  Google Scholar 

  • Gambello MJ, Kaye S, Iglewski BH (1993) LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect Immun 61: 1180–1184.

    PubMed  CAS  Google Scholar 

  • Giangrossi M, Prosseda G, Tran CN, Brandi A, Colonna B, Falconi M (2010) A novel antisense RNA regulates at transcriptional level the virulence gene icsA of Shigella flexneri. Nucleic Acids Res 38: 3362–3375.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez N, Heeb S, Valverde C, Kay E, Reimmann C, Junier T, Haas D (2008) Genome-wide search reveals a novel GacA-regulated small RNA in Pseudomonas species. BMC Genomics 9: 167.

    Article  PubMed  CAS  Google Scholar 

  • Goodman AL, Kulasekara B, Rietsch A, Boyd D, Smith RS, Lory S (2004) A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 7: 745–754.

    Article  PubMed  CAS  Google Scholar 

  • Goodman AL, Merighi M, Hyodo M, Ventre I, Filloux A, Lory S (2009) Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes Dev 23: 249–259.

    Article  PubMed  CAS  Google Scholar 

  • Görke B, Stülke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6: 613–624.

    Article  PubMed  CAS  Google Scholar 

  • Görke B, Vogel J (2008) Noncoding RNA control of the making and breaking of sugars. Genes Dev 22: 2914–2925.

    Article  PubMed  CAS  Google Scholar 

  • Gottesman S (2004) The small RNA regulators of Escherichia coli: roles and mechanisms. Annu Rev Microbiol 58: 303–328.

    Article  PubMed  CAS  Google Scholar 

  • Gottesman S (2005) Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet 21: 399–404.

    Article  PubMed  CAS  Google Scholar 

  • Hantke K (2001) Iron and metal regulation in bacteria. Curr Opin Microbiol 4: 172–177.

    Article  PubMed  CAS  Google Scholar 

  • Hauser AR (2009) The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 7: 654–665.

    Article  PubMed  CAS  Google Scholar 

  • Heeb S, Valverde C, Gigot-Bonnefoy C, Haas D (2005) Role of the stress sigma factor RpoS in GacA/RsmA-controlled secondary metabolism and resistance to oxidative stress in Pseudomonas fluorescens CHA0. FEMS Microbiol Lett 243: 251–258.

    Article  PubMed  CAS  Google Scholar 

  • Heurlier K, Denervaud V, Pessi G, Reimmann C, Haas D (2003) Negative control of quorum sensing by RpoN (sigma54) in Pseudomonas aeruginosa PAO1. J Bacteriol 185: 2227–2235.

    Article  PubMed  CAS  Google Scholar 

  • Heurlier K, Williams F, Heeb S, Dormond C, Pessi G, Singer D, Cámara M, Williams P, Haas D (2004) Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J Bacteriol 186: 2936–2945.

    Article  PubMed  CAS  Google Scholar 

  • Hsu JL, Chen HC, Peng HL, Chang HY (2008) Characterization of the histidine-containing phosphotransfer protein B-mediated multistep phosphorelay system in Pseudomonas aeruginosa PAO1. J Biol Chem 283: 9933–9944.

    Article  PubMed  CAS  Google Scholar 

  • Humair B, Gonzalez N, Mossialos D, Reimmann C, Haas D (2009) Temperature-responsive sensing regulates biocontrol factor expression in Pseudomonas fluorescens CHA0. ISME J 3: 955–965.

    Article  PubMed  CAS  Google Scholar 

  • Humair B, Wackwitz B, Haas D (2010) GacA-controlled activation of promoters for small RNA genes in Pseudomonas fluorescens. Appl Environ Microbiol 76: 1497–1506.

    Article  PubMed  CAS  Google Scholar 

  • Jacques JF, Jang S, Prevost K, Desnoyers G, Desmarais M, Imlay J, Massé E (2006) RyhB small RNA modulates the free intracellular iron pool and is essential for normal growth during iron limitation in Escherichia coli. Mol Microbiol 62: 1181–1190.

    Article  PubMed  CAS  Google Scholar 

  • James BD, Olsen GJ, Liu JS, Pace NR (1988) The secondary structure of ribonuclease P RNA, the catalytic element of a ribonucleoprotein enzyme. Cell 52: 19–26.

    Article  PubMed  CAS  Google Scholar 

  • Janzon L, Lofdahl S, Arvidson S (1989) Identification and nucleotide sequence of the delta-lysin gene, hld, adjacent to the accessory gene regulator (agr) of Staphylococcus aureus. Mol Gen Genet 219: 480–485.

    Article  PubMed  CAS  Google Scholar 

  • Johansen J, Rasmussen AA, Overgaard M, Valentin-Hansen P (2006) Conserved small non-coding RNAs that belong to the sigmaE regulon: role in down-regulation of outer membrane proteins. J Mol Biol 364: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Juhas M, Eberl L, Tümmler B (2005) Quorum sensing: the power of cooperation in the world of Pseudomonas. Environ Microbiol 7: 459–471.

    Article  PubMed  CAS  Google Scholar 

  • Kaberdin VR, Bläsi U (2006) Translation initiation and the fate of bacterial mRNAs. FEMS Microbiol Rev 30: 967–979.

    Article  PubMed  CAS  Google Scholar 

  • Kay E, Dubuis C, Haas D (2005) Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci U S A 102: 17136–17141.

    Article  PubMed  CAS  Google Scholar 

  • Kay E, Humair B, Denervaud V, Riedel K, Spahr S, Eberl L, Valverde C, Haas D (2006) Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa. J Bacteriol 188: 6026–6033.

    Article  PubMed  CAS  Google Scholar 

  • Kazantsev AV, Pace NR (2006) Bacterial RNase P: a new view of an ancient enzyme. Nat Rev Microbiol 4: 729–740.

    Article  PubMed  CAS  Google Scholar 

  • Keenan RJ, Freymann DM, Stroud RM, Walter P (2001) The signal recognition particle. Annu Rev Biochem 70: 755–775.

    Article  PubMed  CAS  Google Scholar 

  • Keiler KC (2007) Physiology of tmRNA: what gets tagged and why? Curr Opin Microbiol 10: 169–175.

    Article  PubMed  CAS  Google Scholar 

  • Lapouge K, Schubert M, Allain FH, Haas D (2008) Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol 67: 241–253.

    Article  PubMed  CAS  Google Scholar 

  • Lapouge K, Sineva E, Lindell M, Starke K, Baker CS, Babitzke P, Haas D (2007) Mechanism of hcnA mRNA recognition in the Gac/Rsm signal transduction pathway of Pseudomonas fluorescens. Mol Microbiol 66: 341–356.

    Article  PubMed  CAS  Google Scholar 

  • Laskowski MA, Osborn E, Kazmierczak BI (2004) A novel sensor kinase-response regulator hybrid regulates type III secretion and is required for virulence in Pseudomonas aeruginosa. Mol Microbiol 54: 1090–1103.

    Article  PubMed  CAS  Google Scholar 

  • Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118: 69–82.

    Article  PubMed  CAS  Google Scholar 

  • Livny J, Brencic A, Lory S, Waldor MK (2006) Identification of 17 Pseudomonas aeruginosa sRNAs and prediction of sRNA-encoding genes in 10 diverse pathogens using the bioinformatic tool sRNAPredict2. Nucleic Acids Res 34: 3484–3493.

    Article  PubMed  CAS  Google Scholar 

  • Lorenz C, von Pelchrzim F, Schroeder R (2006) Genomic systematic evolution of ligands by exponential enrichment (Genomic SELEX) for the identification of protein-binding RNAs independent of their expression levels. Nat Protoc 1: 2204–2212.

    Article  PubMed  CAS  Google Scholar 

  • Lorenz C, Gesell T, Zimmermann B, Schoeberl U, Bilusic I, Rajkowitsch L, Waldsich C, von Haeseler A, Schroeder R (2010) Genomic SELEX for Hfq-binding RNAs identifies genomic aptamers predominantly in antisense transcripts. Nucleic Acids Res. doi:10.1093/nar/ gkq032

    Google Scholar 

  • Massé E, Gottesman S (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci U S A 99: 4620–4625.

    Article  PubMed  CAS  Google Scholar 

  • Massé E, Vanderpool CK, Gottesman S (2005) Effect of RyhB small RNA on global iron use in Escherichia coli. J Bacteriol 187: 6962–6971.

    Article  PubMed  CAS  Google Scholar 

  • Massé E, Salvail H, Desnoyers G, Arguin M (2007) Small RNAs controlling iron metabolism. Curr Opin Microbiol 10: 140–145.

    Article  PubMed  CAS  Google Scholar 

  • Massé E, Escorcia FE, Gottesman S (2003) Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17: 2374–2383.

    Article  PubMed  CAS  Google Scholar 

  • Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish JM, Koehrsen M, Rokas A, Yandava CN, Engels R, Zeng E, Olavarietta R, Doud M, Smith RS, Montgomery P, White JR, Godfrey PA, Kodira C, Birren B, Galagan JE, Lory S (2008) Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci U S A 105: 3100–3105.

    Article  PubMed  CAS  Google Scholar 

  • Mikulecky PJ, Kaw MK, Brescia CC, Takach JC, Sledjeski DD, Feig AL (2004) Escherichia coli Hfq has distinct interaction surfaces for DsrA, rpoS and poly(A) RNAs. Nat Struct Mol Biol 11: 1206–1214.

    Article  PubMed  CAS  Google Scholar 

  • Moll I, Afonyushkin T, Vytvytska O, Kaberdin VR, Bläsi U (2003) Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. RNA 9: 1308–1314.

    Article  PubMed  CAS  Google Scholar 

  • Møller T, Franch T, Hojrup P, Keene DR, Bachinger HP, Brennan RG, Valentin-Hansen P (2002) Hfq: a bacterial Sm-like protein that mediates RNA-RNA interaction. Mol Cell 9: 23–30.

    Article  PubMed  Google Scholar 

  • Moreno R, Ruiz-Manzano A, Yuste L, Rojo F (2007) The Pseudomonas putida Crc global regulator is an RNA binding protein that inhibits translation of the AlkS transcriptional regulator. Mol Microbiol. 64:665–675.

    Article  PubMed  CAS  Google Scholar 

  • Morfeldt E, Taylor D, von Gabain A, Arvidson S (1995) Activation of alpha-toxin translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. EMBO J 14: 4569–4577.

    PubMed  CAS  Google Scholar 

  • Nakae T (1995) Role of membrane permeability in determining antibiotic resistance in Pseudomonas aeruginosa. Microbiol Immunol 39: 221–229.

    PubMed  CAS  Google Scholar 

  • Nikaido H (1996) Multidrug efflux pumps of gram-negative bacteria. J Bacteriol 178: 5853–5859.

    PubMed  CAS  Google Scholar 

  • Oglesby AG, Farrow JM,3rd, Lee JH, Tomaras AP, Greenberg EP, Pesci EC, Vasil ML (2008) The influence of iron on Pseudomonas aeruginosa physiology: a regulatory link between iron and quorum sensing. J Biol Chem 283: 15558–15567.

    Article  PubMed  CAS  Google Scholar 

  • Papenfort K, Vogel J (2009) Multiple target regulation by small noncoding RNAs rewires gene expression at the post-transcriptional level. Res Microbiol 160: 278–287.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer V, Papenfort K, Lucchini S, Hinton JC, Vogel J (2009) Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nat Struct Mol Biol 16: 840–846.

    Article  PubMed  CAS  Google Scholar 

  • Piddock LJ (2006) Multidrug-resistance efflux pumps — not just for resistance. Nat Rev Microbiol 4: 629–636.

    Article  PubMed  CAS  Google Scholar 

  • Reimmann C, Valverde C, Kay E, Haas D (2005) Posttranscriptional repression of GacS/GacAcontrolled genes by the RNA-binding protein RsmE acting together with RsmA in the biocontrol strain Pseudomonas fluorescens CHA0. J Bacteriol 187: 276–285.

    Article  PubMed  CAS  Google Scholar 

  • Repoila F, Darfeuille F (2009) Small regulatory non-coding RNAs in bacteria: physiology and mechanistic aspects. Biol Cell 101: 117–131.

    Article  PubMed  CAS  Google Scholar 

  • Repoila F, Majdalani N, Gottesman S (2003) Small non-coding RNAs, co-ordinators of adaptation processes in Escherichia coli: the RpoS paradigm. Mol Microbiol 48: 855–861.

    Article  PubMed  CAS  Google Scholar 

  • Rivas E, Eddy SR (2001) Noncoding RNA gene detection using comparative sequence analysis. BMC Bioinformatics 2: 8.

    Article  PubMed  CAS  Google Scholar 

  • Schubert M, Lapouge K, Duss O, Oberstrass FC, Jelesarov I, Haas D, Allain FH (2007) Molecular basis of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA. Nat Struct Mol Biol 14: 807–813.

    Article  PubMed  CAS  Google Scholar 

  • Schumacher MA, Pearson RF, Møller T, Valentin-Hansen P, Brennan RG (2002) Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: a bacterial Sm-like protein. EMBO J. 21: 3546–3556.

    Article  PubMed  CAS  Google Scholar 

  • Sharma CM, Darfeuille F, Plantinga TH, Vogel J (2007) A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev 21: 2804–2817.

    Article  PubMed  CAS  Google Scholar 

  • Silvaggi JM, Perkins JB, Losick R (2005) Small untranslated RNA antitoxin in Bacillus subtilis. J Bacteriol 187: 6641–6650.

    Article  PubMed  CAS  Google Scholar 

  • Sonnleitner E, Abdou L, Haas D (2009) Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 106: 21866–21871.

    Article  PubMed  CAS  Google Scholar 

  • Sonnleitner E, Schuster M, Sorger-Domenigg T, Greenberg EP, Bläsi U (2006) Hfq-dependent alterations of the transcriptome profile and effects on quorum sensing in Pseudomonas aeruginosa. Mol Microbiol 59: 1542–1558.

    Article  PubMed  CAS  Google Scholar 

  • Sonnleitner E, Sorger-Domenigg T, Madej MJ, Findeiss S, Hackermüller J, Hüttenhofer A, Stadler PF, Bläsi U, Moll I (2008) Detection of small RNAs in Pseudomonas aeruginosa by RNomics and structure-based bioinformatic tools. Microbiology 154: 3175–3187.

    Article  PubMed  CAS  Google Scholar 

  • Sorek R, Kunin V, Hugenholtz P (2008) CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6: 181–186.

    Article  PubMed  CAS  Google Scholar 

  • Sorger-Domenigg T, Sonnleitner E, Kaberdin VR, Bläsi U (2007) Distinct and overlapping binding sites of Pseudomonas aeruginosa Hfq and RsmA proteins on the non-coding RNA RsmY. Biochem Biophys Res Commun 352: 769–773.

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Zhulin I, Wartell RM (2002) Predicted structure and phyletic distribution of the RNAbinding protein Hfq. Nucleic Acids Res 30: 3662–3671.

    Article  PubMed  CAS  Google Scholar 

  • Toder DS, Ferrell SJ, Nezezon JL, Rust L, Iglewski BH (1994) lasA and lasB genes of Pseudomonas aeruginosa: analysis of transcription and gene product activity. Infect Immun 62: 1320–1327.

    PubMed  CAS  Google Scholar 

  • Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H, Balestrino D, Loh E, Gripenland J, Tiensuu T, Vaitkevicius K, Barthelemy M, Vergassola M, Nahori MA, Soubigou G, Régnault B, Coppée JY, Lecuit M, Johansson J, Cossart P (2009) The Listeria transcriptional landscape from saprophytism to virulence. Nature 459: 950–956.

    Article  PubMed  CAS  Google Scholar 

  • Ullmann A (1996) Catabolite repression: a story without end. Res Microbiol 147: 455–458.

    Article  PubMed  CAS  Google Scholar 

  • Urban JH, Vogel J (2008) Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation. PLoS Biol 6: e64.

    Article  PubMed  CAS  Google Scholar 

  • Urbanowski ML, Stauffer LT, Stauffer GV (2000) The gcvB gene encodes a small untranslated RNA involved in expression of the dipeptide and oligopeptide transport systems in Escherichia coli. Mol Microbiol 37: 856–868.

    Article  PubMed  CAS  Google Scholar 

  • Valverde C, Lindell M, Wagner EG, Haas D (2004) A repeated GGA motif is critical for the activity and stability of the riboregulator RsmY of Pseudomonas fluorescens. J Biol Chem 279: 25066–25074.

    Article  PubMed  CAS  Google Scholar 

  • van Delden C, Iglewski BH (1998) Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4: 551–560.

    Article  PubMed  Google Scholar 

  • van der Oost J, Jore MM, Westra ER, Lundgren M, Brouns SJ (2009). CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci 34: 401–407.

    Article  PubMed  CAS  Google Scholar 

  • Vasil ML (2007) How we learnt about iron acquisition in Pseudomonas aeruginosa: a series of very fortunate events. Biometals 20: 587–601.

    Article  PubMed  CAS  Google Scholar 

  • Vecerek B, Moll I, Bläsi U (2007) Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding. EMBO J 26: 965–975.

    Article  PubMed  CAS  Google Scholar 

  • Vecerek B, Rajkowitsch L, Sonnleitner E, Schroeder R, Bläsi U (2008). The C-terminal domain of Escherichia coli Hfq is required for regulation. Nucleic Acids Res 36: 133–143.

    Article  PubMed  CAS  Google Scholar 

  • Ventre I, Goodman AL, Vallet-Gely I, Vasseur P, Soscia C, Molin S, Bleves S, Lazdunski A, Lory S, Filloux A. (2006) Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci U S A 103: 171–176.

    Article  PubMed  CAS  Google Scholar 

  • Vogel DW, Hartmann RK, Struck JC, Ulbrich N, Erdmann VA (1987) The sequence of the 6S RNA gene of Pseudomonas aeruginosa. Nucleic Acids Res 15: 4583–4591.

    Article  PubMed  CAS  Google Scholar 

  • Wadler CS, Vanderpool CK (2007) A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide. Proc Natl Acad Sci U S A 104: 20454–20459.

    Article  PubMed  CAS  Google Scholar 

  • Washietl S, Hofacker IL, Stadler PF (2005) Fast and reliable prediction of noncoding RNAs. Proc Natl Acad Sci U S A 102: 2454–2459.

    Article  PubMed  CAS  Google Scholar 

  • Wassarman KM (2007) 6S RNA: a small RNA regulator of transcription. Curr Opin Microbiol 10: 164–168.

    Article  PubMed  CAS  Google Scholar 

  • Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136: 615–628.

    Article  PubMed  CAS  Google Scholar 

  • Wick MJ, Hamood AN, Iglewski BH (1990) Analysis of the structure-function relationship of Pseudomonas aeruginosa exotoxin A. Mol Microbiol 4: 527–535.

    Article  PubMed  CAS  Google Scholar 

  • Wiedenheft B, Zhou K, Jinek M, Coyle SM, Ma W, Doudna JA (2009) Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure 17: 904–912.

    Article  PubMed  CAS  Google Scholar 

  • Wilderman PJ, Sowa NA, FitzGerald DJ, FitzGerald PC, Gottesman S, Ochsner UA, Vasil ML (2004) Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Proc Natl Acad Sci U S A 101: 9792–9797.

    Article  PubMed  CAS  Google Scholar 

  • Williams KP, Bartel DP (1996) Phylogenetic analysis of tmRNA secondary structure. RNA 2: 1306–1310.

    PubMed  CAS  Google Scholar 

  • Williams P, Camara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12: 182–191.

    Article  PubMed  CAS  Google Scholar 

  • Zegans ME, Wagner JC, Cady KC, Murphy DM, Hammond JH, O’Toole GA (2009) Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa. J Bacteriol 191: 210–219.

    Article  PubMed  CAS  Google Scholar 

  • Zhang A, Wassarman KM, Ortega J, Steven AC, Storz G (2002) The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol Cell 9: 11–22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Sonnleitner, E., Sorger-Domenigg, T., Bläsi, U. (2012). Pseudomonas Aeruginosa Small Regulatory RNAs. In: Regulatory RNAs in Prokaryotes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0218-3_4

Download citation

Publish with us

Policies and ethics