Skip to main content

Molecular palaeontology as a new tool to study the evolution of ribosomal RNA

  • Chapter
Ribosomes

Abstract

The ribosome is a large RNA-protein complex that performs the synthesis of proteins in all living organisms. The emergence of the ribosome has been a pivotal step in the evolution of life on earth. It is generally accepted that the ribosome emerged almost four billion years ago from the RNA world, in which the primordial chemical reactions of life were catalyzed by RNA (Crick, 1968; Gilbert, 1986). Correspondingly, the ancient ribosome represented an RNA body, while proteins were added to its structure later, when the ribosome became effective enough to synthesize them. The original ribosomal RNA (rRNA) is believed to have been a rather small molecule, which gradually expanded to the modern size through addition of new elements (Noller, 2004; Hury et al., 2006; Smith et al., 2008). In order to understand details of this evolutionary process, one cannot use the standard approach of aligning available nucleotide sequences of ribosomal RNA and constructing phylogenetic trees. Due to the nature of that approach, its ability to elucidate evolutionary events in the past is limited by the moment when all branches of the phylogenetic tree come together, which corresponds to the so-called Last Universal Common Ancestor (LUCA). On the other hand, because in all presently living organisms the ribosome core has essentially the same structure (Gutell et al., 1994; Doudna and Rath, 2002), it should have formed before the split of the tree of life in three major domains, i. e. before LUCA. This discrepancy makes the standard approach inapplicable to the problem of early ribosome evolution and necessitates the development of alternative approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agmon I, Bashan A, Zarivach R, Yonath A (2005) Symmetry at the active site of the ribosome: structural and functional implications. Biol Chem 386: 833–844

    Article  PubMed  CAS  Google Scholar 

  • Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289: 905–920

    Article  PubMed  CAS  Google Scholar 

  • Bokov K, Steinberg SV (2009) A hierarchical model for evolution of 23S ribosomal RNA. Nature 457: 977–980

    Article  PubMed  CAS  Google Scholar 

  • Crick FH (1968) The origin of the genetic code. J Mol Biol 38: 367–369

    Article  PubMed  CAS  Google Scholar 

  • Doherty EA, Batey RT, Masquida B, Doudna JA (2001) A universal mode of helix packing in RNA. Nature Struct Biol 8: 339–343

    Article  PubMed  CAS  Google Scholar 

  • Doudna JA, Rath VL (2002) Structure and function of the eukaryotic ribosome: the next frontier. Cell 109: 153–156

    Article  PubMed  CAS  Google Scholar 

  • Gilbert W (1986) Origin of life: The RNA world. Nature 319: 618

    Article  Google Scholar 

  • Gutell RR, Larsen N, Woese CR (1994) Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev 58: 10–26

    PubMed  CAS  Google Scholar 

  • Hansen JL, Schmeing TM, Moore PB, Steitz TA (2002) Structural insights into peptide bond formation. Proc Natl Acad Sci USA 99: 11670–11675

    Article  PubMed  CAS  Google Scholar 

  • Hury J, Nagaswami U, Larios-Sanz M, Fox GE (2006) Ribosome origins: The relative age of 23S rRNA Domains. Orig Life Evol Biosph 36: 421–429

    Article  PubMed  CAS  Google Scholar 

  • Kim DF, Green R (1999) Base-pairing between 23S rRNA and tRNA in the ribosomal A site. Mol Cell 4: 859–864

    Article  PubMed  CAS  Google Scholar 

  • Mears JA, Cannone JJ, Stagg SM, Gutell RR, Agrawal RK, Harvey SC (2002) Modeling a minimal ribosome based on comparative sequence analysis. J Mol Biol. 321: 215–234

    Article  PubMed  CAS  Google Scholar 

  • Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289: 920–930

    Article  PubMed  CAS  Google Scholar 

  • Nissen P, Ippolito JA, Ban N, Moore PB, Steitz TA (2001) RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc Natl Acad Sci USA 98: 4899–4903

    Article  PubMed  CAS  Google Scholar 

  • Noller HF (2004) The driving force for molecular evolution of translation. RNA 10: 1833–1837

    Article  PubMed  CAS  Google Scholar 

  • O’Brien TW (2002) Evolution of a protein-rich mitochondrial ribosome: implications for human genetic disease. Gene 286: 73–79

    Article  CAS  Google Scholar 

  • Polacek N, Mankin AS (2005) The ribosomal peptidyl transferase center: structure, function, evolution, inhibition. Crit Rev Biochem Mol Biol 40: 285–311

    Article  PubMed  CAS  Google Scholar 

  • Samaha RR, Green R, Noller HF (1995) A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome. Nature 377: 309–314

    Article  PubMed  CAS  Google Scholar 

  • Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JH (2005) Structures of the bacterial ribosome at 3.5 Ã… resolution. Science 310: 827–834

    Article  PubMed  CAS  Google Scholar 

  • Selmer M, Dunham CM, Murphy FV, Weixlbaumer A, Petry S, Kelley AC, Weir JR, Ramakrishnan V (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313: 1935–1942

    Article  PubMed  CAS  Google Scholar 

  • Smit S, Widnan J, Knight R (2007) Evolutionary rates vary among rRNA structural elements. Nucleic Acids Res 35: 3339–3354

    Article  PubMed  CAS  Google Scholar 

  • Smith TF, Lee JC, Gutell, RR, Hartman H (2008) The origin and evolution of the ribosome. Biol Direct 3: 16

    Article  PubMed  Google Scholar 

  • Wimberly BT, Brodersen DE, Clemons WM Jr, Morgan-Warren RJ, Carter AP, Vonrhein C, Hartsch T, Ramakrishnan V (2000) Structure of the 30S ribosomal subunit. Nature 407: 327–339

    Article  PubMed  CAS  Google Scholar 

  • Wuyts J, Van de Peer I, De Wachter R (2001) Distribution of substitution rates and location of insertion sites in the tertiary structure of ribosomal RNA. Nucleic Acid Res 29: 5017–5028

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Cech TR (1997) Peptide bond formation by in vitro selected ribozymes. Nature 390: 96–100

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Cech TR (1998) Peptidyl-transferase ribozymes: trans-reactions, structural characterization and ribosomal RNA-like features. Chem Biol 5: 539–553

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Steinberg, S.V., Bokov, K. (2011). Molecular palaeontology as a new tool to study the evolution of ribosomal RNA. In: Rodnina, M.V., Wintermeyer, W., Green, R. (eds) Ribosomes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0215-2_33

Download citation

Publish with us

Policies and ethics