Skip to main content

Nascent peptide-mediated ribosome stalling promoted by antibiotics

  • Chapter
Ribosomes

Abstract

Many mechanisms that regulate protein expression operate through mRNA. The sequence of the Shine-Dalgarno region and its accessibility influence the efficiency of initiation of translation; the choice of codons and mRNA secondary structure affect progression of the ribosome along mRNA at the elongation stage; and the mRNA context and identity of the stop codon determine how efficiently protein is released at the termination step. However, there is another important mechanism that controls expression of a number of genes at a principally different level. In this mechanism, the ribosome checks the structure of the polypeptide it is assembling; in response to certain nascent peptide sequences and, often, specific cellular cues, it modulates its activity. One of the most dramatic types of ribosomal response to the regulatory nascent peptide sequences is stalling. In the best-characterized cases, the nascent peptide—controlled stalling occurs at a dedicated regulatory open reading frame (ORF) that precedes the regulated gene or operon whose expression is transcriptionally or translationally attenuated. Ribosome stalling relieves the attenuation by either altering the mRNA secondary structure or interfering with binding of the transcription termination factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289: 905–920

    Article  PubMed  CAS  Google Scholar 

  • Bemer-Melchior P, Juvin ME, Tassin S, Bryskier A, Schito GC, Drugeon HB (2000) In vitro activity of the new ketolide telithromycin compared with those of macrolides against Streptococcus pyogenes: Influences of resistance mechanisms and methodological factors. Antimicrob Agents Chemother 44: 2999–3002

    Article  PubMed  CAS  Google Scholar 

  • Berisio R, Schluenzen F, Harms J, Bashan A, Auerbach T, Baram D, Yonath A (2003) Structural insight into the role of the ribosomal tunnel in cellular regulation. Nat Struct Biol 10: 366–370

    Article  PubMed  CAS  Google Scholar 

  • Bonnefoy A, Girard AM, Agouridas C, Chantot JF (1997) Ketolides lack inducibility properties of MLS(B) resistance phenotype. J Antimicrob Chemother 40: 85–90

    Article  PubMed  CAS  Google Scholar 

  • Bornemann T, Jockel J, Rodnina MV, Wintermeyer W (2008) Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel. Nat Struct Molec Biol 15: 494–499

    Article  CAS  Google Scholar 

  • Chiba S, Lamsa A, Pogliano K (2009) A ribosome-nascent chain sensor of membrane protein biogenesis in Bacillus subtilis. EMBOJ 28: 3461–3475

    Article  CAS  Google Scholar 

  • Cruz-Vera LR, Rajagopal S, Squires C, Yanofsky C (2005) Features of ribosome-peptidyl-tRNA interactions essential for tryptophan induction of tna operon expression. Mol Cell 19: 333–343

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Vera LR, Gong M, Yanofsky C (2006) Changes produced by bound tryptophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide. Proc Natl Acad Sci USA 103: 3598–3603

    Article  PubMed  CAS  Google Scholar 

  • Dunkle JA, Xiong L, Mankin AS, Cate JHD (2010) Structures of the E. coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc Natl Acad Sci USA 107: 17 152–17157

    Article  Google Scholar 

  • Erlacher MD, Lang K, Shankaran N, Wotzel B, Huttenhofer A, Micura R, Mankin AS, Polacek N (2005) Chemical engineering of the peptidyl transferase center reveals an important role of the 2′-hydroxyl group of A2451. Nucl Acids Res 33: 1618–1627

    Article  PubMed  CAS  Google Scholar 

  • Fulle S, Gohlke H (2009) Statics of the ribosomal exit tunnel: implications for cotranslational peptide folding, elongation regulation, and antibiotics binding. J Mol Biol 387: 502–517

    Article  PubMed  CAS  Google Scholar 

  • Gong F, Yanofsky C (2002) Instruction of translating ribosome by nascent peptide. Science 297: 1864–1867

    Article  PubMed  CAS  Google Scholar 

  • Gryczan T, Israeli-Reches M, Del Bue M, Dubnau D (1984) DNA sequence and regulation of ermD, a macrolide-lincosamide-streptogramin B resistance element from Bacillus licheniformis. Mol Gen Genet 194: 349–356

    Article  PubMed  CAS  Google Scholar 

  • Gryczan TJ, Grandi G, Hahn J, Grandi R, Dubnau D (1980) Conformational alteration of mRNA structure and the posttranscriptional regulation of erythromycin-induced drug resistance. Nucl Acids Res 8: 6081–6097

    Article  PubMed  CAS  Google Scholar 

  • Harms J, Schluenzen F, Zarivach R, Bashan A, Gat S, Agmon I, Bartels H, Franceschi F, Yonath A (2001) High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107: 679–688

    Article  PubMed  CAS  Google Scholar 

  • Hartz D, McPheeters DS, Traut R, Gold L (1988) Extension inhibition analysis of translation initiation complexes. Meth Enzymol 164: 419–425

    Article  PubMed  CAS  Google Scholar 

  • Heurgue-Hamard V, Dincbas V, Buckingham RH, Ehrenberg M (2000) Origins of minigene-dependent growth inhibition in bacterial cells. EMBO J 19: 2701–2709

    Article  PubMed  CAS  Google Scholar 

  • Horinouchi S, Weisblum B (1980) Posttranscriptional modification of mRNA conformation: mechanism that regulates erythromycin-induced resistance. Proc Natl Acad Sci USA 77: 7079–7083

    Article  PubMed  CAS  Google Scholar 

  • Hue KK, Bechhofer DH (1992) Regulation of the macrolide-lincosamide-streptogramin B resistance gene ermD. J Bacteriol 174: 5860–5868

    PubMed  CAS  Google Scholar 

  • Ito K, Chiba S, Pogliano K (2010) Divergent stalling sequences sense and control cellular physiology. Bioch Biophys Res Commun 393: 1–5

    Article  CAS  Google Scholar 

  • Jenner L, Rees B, Yusupov M, Yusupova G (2007) Messenger RNA conformations in the ribosomal E site revealed by X-ray crystallography. EMBO Rep 8: 846–850

    Article  PubMed  CAS  Google Scholar 

  • Kwak JH, Choi EC, Weisblum B (1991) Transcriptional attenuation control of ermK, a macrolide-lincosamide-streptogramin B resistance determinant from Bacillus licheniformis. J Bacteriol 173: 4725–4735

    PubMed  CAS  Google Scholar 

  • Kwon AR, Min YH, Yoon EJ, Kim JA, Shim MJ, Choi EC (2006) ErmK leader peptide: amino acid sequence critical for induction by erythromycin. Arch Pharm Res 29: 1154–1157

    Article  PubMed  CAS  Google Scholar 

  • Lawrence M, Lindahl L, Zengel JM (2008) Effects on translation pausing of alterations in protein and RNA components of the ribosome exit tunnel. J Bacteriol 190: 5862–5869

    Article  PubMed  CAS  Google Scholar 

  • Lodato PB, Rogers EJ, Lovett PS (2006) A variation of the translation attenuation model can explain the inducible regulation of the pBC16 tetracycline resistance gene in Bacillus subtilis. J Bacteriol 188: 4749–4758

    Article  PubMed  CAS  Google Scholar 

  • Lovett PS (1996) Translation attenuation regulation of chloramphenicol resistance in bacteria — A review. Gene 179: 157–162

    Article  PubMed  CAS  Google Scholar 

  • Lovett PS, Rogers EJ (1996) Ribosome regulation by the nascent peptide. Microbiol Rev 60: 366–385

    PubMed  CAS  Google Scholar 

  • Mayford M, Weisblum B (1989) ermC leader peptide. Amino acid sequence critical for induction by translational attenuation. J Mol Biol 206: 69–79

    Article  PubMed  CAS  Google Scholar 

  • Menninger JR, Otto DP (1982) Erythromycin, carbomycin, and spiramycin inhibit protein synthesis by stimulating the dissociation of peptidyl-tRNA from ribosomes. Antimicrob Agents Chemother 21: 810–818

    Article  Google Scholar 

  • Morita Y, Gilmour C, Metcalf D, Poole K (2009) Translational control of the antibiotic inducibility of the PA5471 gene required for mexXY multidrug efflux gene expression in Pseudomonas aeruginosa. J Bacteriol 191: 4966–4975

    Article  PubMed  CAS  Google Scholar 

  • Murphy E (1985) Nucleotide sequence of ermA, a macrolide-lincosamide-streptogramin B determinant in Staphylococcus aureus. J Bacteriol 162: 633–640

    PubMed  CAS  Google Scholar 

  • Muto H, Nakatogawa H, Ito K (2006) Genetically encoded but nonpolypeptide prolyl-tRNA functions in the A site for SecM-mediated ribosomal stall. Mol Cell 22: 545–552

    Article  PubMed  CAS  Google Scholar 

  • Nakatogawa H, Ito K (2001) Secretion monitor, SecM, undergoes self-translation arrest in the cytosol. Mol Cell 7: 185–192

    Article  PubMed  CAS  Google Scholar 

  • Nakatogawa H, Ito K (2002) The ribosomal exit tunnel functions as a discriminating gate. Cell 108: 629–636

    Article  PubMed  CAS  Google Scholar 

  • Petry S, Brodersen DE, Murphy FVt, Dunham CM, Selmer M, Tarry MJ, Kelley AC, Ramakrishnan V (2005) Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell 123: 1255–1266

    Article  PubMed  CAS  Google Scholar 

  • Ramu H, Mankin A, Vazquez-Laslop N (2009) Programmed drug-dependent ribosome stalling. Mol Microbiol 71: 811–824

    Article  PubMed  CAS  Google Scholar 

  • Ramu, H, Vázquez-Laslop, N, Klepacki, D, Dai, Q, Piccirilli, J, Micura, R, Mankin, A S (2011) Nascent peptide in the ribosome exit tunnel affects functional properties of the A-site of the peptidyl transferase center. Mol Cell 41: 321–330

    Article  PubMed  CAS  Google Scholar 

  • Roberts MC (2008) Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol Lett 282: 147–159

    Article  PubMed  CAS  Google Scholar 

  • Rodnina MV, Beringer M, Wintermeyer W (2007) How ribosomes make peptide bonds. Trends Biochem Sci 32: 20–26

    Article  PubMed  CAS  Google Scholar 

  • Rogers EJ, Kim UJ, Ambulos NP, Jr., Lovett PS (1990) Four codons in the cat-86 leader define a chloramphenicol-sensitive ribosome stall sequence. J Bacteriol 172: 110–115

    PubMed  CAS  Google Scholar 

  • Sandler P, Weisblum B (1989) Erythromycin-induced ribosome stall in the ermA leader: a barricade to 5′-to-3′ nucleolytic cleavage of the ermA transcript. J Bacteriol 171: 6680–6688

    PubMed  CAS  Google Scholar 

  • Schluenzen F, Zarivach R, Harms J, Bashan A, Tocilj A, Albrecht R, Yonath A, Franceschi F (2001) Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413: 814–821

    Article  Google Scholar 

  • Schmeing TM, Huang KS, Strobel SA, Steitz TA (2005) An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature 438: 520–524

    Article  PubMed  CAS  Google Scholar 

  • Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JH (2005) Structures of the bacterial ribosome at 3.5 A resolution. Science 310: 827–834

    Article  PubMed  CAS  Google Scholar 

  • Seidelt B, Innis CA, Wilson DN, Gartmann M, Armache JP, Villa E, Trabuco LG, Becker T, Mielke T, Schulten K, Steitz TA, Beckmann R (2009) Structural insight into nascent polypeptide chain-mediated translational stalling. Science 326: 1412–1415

    Article  PubMed  CAS  Google Scholar 

  • Selmer M, Dunham CM, Murphy FVt, Weixlbaumer A, Petry S, Kelley AC, Weir JR, Ramakrishnan V (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313: 1935–1942

    Article  PubMed  CAS  Google Scholar 

  • Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19: 751–755

    Article  PubMed  CAS  Google Scholar 

  • Starosta AL, Karpenko VV, Shishkina AV, Mikolajka A, Sumbatyan NV, Schluenzen F, Korshunova GA, Bogdanov AA, Wilson DN (2010) Interplay between the ribosomal tunnel, nascent chain, and macrolides influences drug inhibition. Chem Biol 17: 504–514

    Article  PubMed  CAS  Google Scholar 

  • Stasinopoulos SJ, Farr GA, Bechhofer DH (1998) Bacillus subtilis tetA(L) gene expression: evidence for regulation by translational reinitiation. Mol Microbiol 30: 923–932

    Article  PubMed  CAS  Google Scholar 

  • Subramanian SL, Ramu, H., Mankin, A. S (2011) Inducible resist-ance to macrolide antibiotics. In: Antibiotic drug discovery and development. Dougherty TJ, Pucci, M. J. (eds.). New York, NY: Springer Publishing Company (in press)

    Google Scholar 

  • Tanner DR, Cariello DA, Woolstenhulme CJ, Broadbent MA, Buskirk AR (2009) Genetic identification of nascent peptides that induce ribosome stalling. J Biol Chem 284: 34 809–34 818

    Article  CAS  Google Scholar 

  • Tenson T, Lovmar M, Ehrenberg M (2003) The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. J Mol Biol 330: 1005–1014

    Article  PubMed  CAS  Google Scholar 

  • Toh SM, Xiong L, Bae T, Mankin AS (2008) The methyltransferase YfgB/RlmN is responsible for modification of adenosine 2503 in 23S rRNA. RNA 14: 98–106

    Article  PubMed  CAS  Google Scholar 

  • Tu D, Blaha G, Moore PB, Steitz TA (2005) Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121: 257–270

    Article  PubMed  CAS  Google Scholar 

  • Vázquez-Laslop N, Thum C, Mankin AS (2008) Molecular mechanism of drug-dependent ribosome stalling. Mol Cell 30: 190–202

    Article  PubMed  CAS  Google Scholar 

  • Vázquez-Laslop N, Ramu, H., Klepacki, D., Mankin, A. S (2010) The key role of a conserved and modified rRNA residue in the ribosomal response to the nascent peptide. EMBO J 29: 3108–3117

    Article  PubMed  CAS  Google Scholar 

  • Vester B, Douthwaite S (2001) Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob Agents Chemother 45: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Voorhees RM, Weixlbaumer A, Loakes D, Kelley AC, Ramakrishnan V (2009) Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Nat Struct Molec Biol 16: 528–533

    Article  CAS  Google Scholar 

  • Voss NR, Gerstein M, Steitz TA, Moore PB (2006) The geometry of the ribosomal polypeptide exit tunnel. J Mol Biol 360: 893–906

    Article  PubMed  CAS  Google Scholar 

  • Weisblum B (1995) Insights into erythromycin action from studies of its activity as inducer of resistance. Antimicrob Agents Chemother 39: 797–805

    Article  PubMed  CAS  Google Scholar 

  • Weisblum B (1998) Macrolide resistance. Drug Resist Updat 1: 29–41

    Article  PubMed  CAS  Google Scholar 

  • Woolhead CA, Johnson AE, Bernstein HD (2006) Translation arrest requires two-way communication between a nascent polypeptide and the ribosome. Mol Cell 22: 587–598

    Article  PubMed  CAS  Google Scholar 

  • Yang R, Cruz-Vera LR, Yanofsky C (2009) 23S rRNA nucleotides in the peptidyl transferase center are essential for tryptophanase operon induction. J Bacteriol 191: 3445–3450

    Article  PubMed  CAS  Google Scholar 

  • Yap MN, Bernstein HD (2009) The plasticity of a translation arrest motif yields insights into nascent polypeptide recognition inside the ribosome tunnel. Mol Cell 34: 201–211

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Hubalewska M, Ignatova Z (2009) Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat Struct Molec Biol 16: 274–280

    Article  CAS  Google Scholar 

  • Zhong P, Cao Z, Hammond R, Chen Y, Beyer J, Shortridge VD, Phan LY, Pratt S, Capobianco J, Reich KA, Flamm RK, Or YS, Katz L (1999) Induction of ribosome methylation in MLS-resistant Streptococcus pneumoniae by macrolides and ketolides. Microb Drug Resist 5: 183–188

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Vázquez-Laslop, N., Ramu, H., Mankin, A. (2011). Nascent peptide-mediated ribosome stalling promoted by antibiotics. In: Rodnina, M.V., Wintermeyer, W., Green, R. (eds) Ribosomes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0215-2_30

Download citation

Publish with us

Policies and ethics