Skip to main content

Decoding and deafness: Two sides of a coin

  • Chapter
Ribosomes

Abstract

Antibiotics used in clinical medicine for the treatment of infectious diseases frequently target bacterial protein synthesis, as illustrated by macrolides, ketolides, lincosamides, oxazolidinones, aminoglycosides, and tetracyclines (Gale et al., 1981). In general, antibiotics target the ribosome at sites of functional relevance, e. g. the sites of decoding, translocation, and peptidyl transfer. The emergence of antibiotic resistance and the toxicity associated with some of the available agents ask for a further exploitation of the ribosome as a drug target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benveniste R, Davies J (1973) Structure-activity relationships among the aminoglycoside antibiotics: role of hydroxyl and amino groups. Antimicrob Agents Chemother 4: 402–409

    Article  PubMed  CAS  Google Scholar 

  • Bommakanti AS, Lindahl L, Zengel JM (2008) Mutation from guanine to adenine in 25S rRNA at the position equivalent to E. coli A2058 does not confer erythromycin sensitivity in Sacchromyces cerevisae. RNA 14: 460–464

    Article  PubMed  CAS  Google Scholar 

  • Bottger EC (2007) Antimicrobial agents targeting the ribosome: the issue of selectivity and toxicity — lessons to be learned. Cell Mol Life Sci 64: 791–795

    Article  PubMed  CAS  Google Scholar 

  • Bottger EC, Springer B, Prammananan T, Kidan Y, Sander P (2001) Structural basis for selectivity and toxicity of ribosomal antibiotics. EMBO Rep 2: 318–323

    Article  PubMed  CAS  Google Scholar 

  • Bravo O, Ballana E, Estivill X (2006) Cochlear alterations in deaf and unaffected subjects carrying the deafness-associated A1555G mutation in the mitochondrial 12S rRNA gene. Biochem Biophys Res Commun 344: 511–516

    Article  PubMed  CAS  Google Scholar 

  • Brown CM, Tate WP (1994) Direct recognition of mRNA stop signals by Escherichia coli polypeptide chain release factor two. J Biol Chem 269: 33164–33170

    PubMed  CAS  Google Scholar 

  • Cabanas MJ, Vazquez D, Modolell J (1978) Inhibition of ribosomal translocation by aminoglycoside antibiotics. Biochem Biophys Res Commun 83: 991–997

    Article  PubMed  CAS  Google Scholar 

  • Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407: 340–348

    Article  PubMed  CAS  Google Scholar 

  • Chambers HF (1996) Chemotherapy of microbial diseases. In: Hardman JG, Limbird LE (eds.) Goodmann & Gilman’s the Pharmaceutical Basis of Therapeutics. McGraw-Hill, pp 1103–1121

    Google Scholar 

  • Chen Y, Huang WG, Zha DJ, Qiu JH, Wang JL, Sha SH, Schacht J (2007) Aspirin attenuates gentamicin ototoxicity: from the laboratory to the clinic. Hear Res 226: 178–182

    Article  PubMed  CAS  Google Scholar 

  • Clerici WJ, Hensley K, DiMartino DL, Butterfield DA (1996) Direct detection of ototoxicant-induced reactive oxygen species generation in cochlear explants. Hear Res 98: 116–124

    Article  PubMed  CAS  Google Scholar 

  • Davies J, Davis BD (1968) Misreading of ribonucleic acid code words induced by aminoglycoside antibiotics. The effect of drug concentration. J Biol Chem 243: 3312–3316

    PubMed  CAS  Google Scholar 

  • De Stasio EA, Dahlberg AE (1990) Effects of mutagenesis of a conserved base-paired site near the decoding region of Escherichia coli 16 S ribosomal RNA. J Mol Biol 212: 127–133

    Article  PubMed  Google Scholar 

  • De Stasio EA, Moazed D, Noller HF, Dahlberg AE (1989) Mutations in 16S ribosomal RNA disrupt antibiotic—RNA interactions. EMBO J 8: 1213–1216

    Google Scholar 

  • Edlind TD (1989) Susceptibility of Giardia lamblia to aminoglycoside protein synthesis inhibitors: correlation with rRNA structure. Antimicrob Agents Chemother 33: 484–488

    Article  PubMed  CAS  Google Scholar 

  • Fan-Minogue H, Bedwell DM (2008) Eukaryotic ribosomal RNA determinants of aminoglycoside resistance and their role in translational fidelity. RNA 14: 148–157

    Article  PubMed  CAS  Google Scholar 

  • Feldman MB, Terry DS, Altman RB, Blanchard SC (2010) Aminoglycoside activity observed on single pre-translocation ribosome complexes. Nat Chem Biol 6: 244

    Article  PubMed  CAS  Google Scholar 

  • Fischel-Ghodsian N (1999) Mitochondrial deafness mutations reviewed. Hum Mutat 13: 261–270

    Article  PubMed  CAS  Google Scholar 

  • Francois B, Russell RJ, Murray JB, Aboul-ela F, Masquida B, Vi-cens Q, Westhof E (2005) Crystal structures of complexes between aminoglycosides and decoding A site oligonucleotides: role of the number of rings and positive charges in the specific binding leading to miscoding. Nucleic Acids Res 33: 5677–5690

    Article  PubMed  CAS  Google Scholar 

  • Gale EF, Cundliffe E, Reynolds PE, Richmond MH, Waring MJ (1981) The molecular basis of antibiotic action. John Wiley & Sons Ltd, London UK

    Google Scholar 

  • Garetz SL, Altschuler RA, Schacht J (1994) Attenuation of gentamicin ototoxicity by glutathione in the guinea pig in vivo. Hear Res 77: 81–87

    Article  PubMed  CAS  Google Scholar 

  • Grentzmann G, Ingram JA, Kelly PJ, Gesteland RF, Atkins JF (1998) A dual-luciferase reporter system for studying recoding signals. RNA 4: 479–486

    Article  PubMed  CAS  Google Scholar 

  • Guan MX (2006) Mitochondrial DNA mutations associated with aminoglycoside ototoxicity. J Audiolog Med 4: 170–178

    Article  Google Scholar 

  • Guan MX, Fischel-Ghodsian N, Attardi G (2001) Nuclear background determines biochemical phenotype in the deafness-associated mitochondrial 12S rRNA mutation. Hum Mol Genet 10: 573–580

    Article  PubMed  CAS  Google Scholar 

  • Hainrichson M, Nudelman I, Baasov T (2008) Designer aminoglycosides: the race to develop improved antibiotics and compounds for the treatment of human genetic diseases. Org Biomol Chem 6: 227–239

    Article  PubMed  CAS  Google Scholar 

  • Henley CM, 3rd, Schacht J (1988) Pharmacokinetics of aminoglycoside antibiotics in blood, inner-ear fluids and tissues and their relationship to ototoxicity. Audiology 27: 137–146

    Article  PubMed  Google Scholar 

  • Hobbie SN, Akshay S, Kalapala SK, Bruell CM, Shcherbakov D, Bottger EC (2008 a) Genetic analysis of interactions with eukaryotic rRNA identify the mitoribosome as target in aminoglycoside ototoxicity. Proc Natl Acad Sci USA 105: 20 888–20 893

    CAS  Google Scholar 

  • Hobbie SN, Bruell C, Kalapala S, Akshay S, Schmidt S, Pfister P, Bottger EC (2006a) A genetic model to investigate drug-target interactions at the ribosomal decoding site. Biochimie 88: 1033–1043

    Article  PubMed  CAS  Google Scholar 

  • Hobbie SN, Bruell CM, Akshay S, Kalapala SK, Shcherbakov D, Bottger EC (2008 b) Mitochondrial deafness alleles confer misreading of the genetic code. Proc Natl Acad Sci USA 105: 3244–3249

    Article  PubMed  Google Scholar 

  • Hobbie SN, Kalapala SK, Akshay S, Bruell C, Schmidt S, Dabow S, Vasella A, Sander P, Bottger EC (2007) Engineering the rRNA decoding site of eukaryotic cytosolic ribosomes in bacteria. Nucleic Acids Res 35: 6086–6093

    Article  PubMed  CAS  Google Scholar 

  • Hobbie SN, Pfister P, Bruell C, Sander P, Francois B, Westhof E, Bottger EC (2006b) Binding of neomycin-class aminoglycoside antibiotics to mutant ribosomes with alterations in the A site of 16S rRNA. Antimicrob Agents Chemother 50: 1489–1496

    Article  PubMed  CAS  Google Scholar 

  • Hobbie SN, Pfister P, Brull C, Westhof E, Bottger EC (2005) Analysis of the contribution of individual substituents in 4,6-aminoglycoside-ribosome interaction. Antimicrob Agents Chemother 49: 5112–5118

    Article  PubMed  CAS  Google Scholar 

  • Howard M, Frizzell RA, Bedwell DM (1996) Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med 2: 467–469

    Article  PubMed  CAS  Google Scholar 

  • Hutchin T, Haworth I, Higashi K, Fischel-Ghodsian N, Stoneking M, Saha N, Arnos C, Cortopassi G (1993) A molecular basis for human hypersensitivity to aminoglycoside antibiotics. Nucleic Acids Res 21: 4174–4179

    Article  PubMed  CAS  Google Scholar 

  • Laurberg M, Asahara H, Korostelev A, Zhu J, Trakhanov S, Noller HF (2008) Structural basis for translation termination on the 70S ribosome. Nature 454: 852–857

    Article  PubMed  CAS  Google Scholar 

  • Mathis A, Wild P, Boettger EC, Kapel CM, Deplazes P (2005) Mitochondrial ribosome as the target for the macrolide antibiotic clarithromycin in the helminth Echinococcus multilocularis. Antimicrob Agents Chemother 49: 3251–3255

    Article  PubMed  CAS  Google Scholar 

  • Mathis A, Wild P, Deplazes P, Boettger EC (2004) The mitochondrial ribosome of the protozoan Acanthamoeba castellanii is the target for macrolide antibiotics. Mol Biochem Parasitol 135: 225–229

    Article  PubMed  CAS  Google Scholar 

  • Ogle JM, Ramakrishnan V (2005) Structural insights into translational fidelity. Annu Rev Biochem 74: 129–177

    Article  PubMed  CAS  Google Scholar 

  • Palmer E, Wilhelm JM, Sherman F (1979) Phenotypic suppression of nonsense mutants in yeast by aminoglycoside antibiotics. Nature 277: 148–150

    Article  PubMed  CAS  Google Scholar 

  • Pathak R, Böttger EC, Vasella A (2005) Design and synthesis of aminoglycoside antibiotics to selectively target 16S ribosomal RNA position 1408. Helvetica Chimica Acta 88: 2967–2985

    Article  CAS  Google Scholar 

  • Pathak R, Perez-Fernandez D, Nandurdikar R, Kalapala SK, Böttger EC, Vasella A (2008) Synthesis and evaluation of paromomycin derivatives modified at C(4′) Helvetica Chimica Acta 91: 1533–1551

    CAS  Google Scholar 

  • Peske F, Savelsbergh A, Katunin VI, Rodnina MV, Wintermeyer W (2004) Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA-mRNA translocation. J Mol Biol 343: 1183–1194

    Article  PubMed  CAS  Google Scholar 

  • Pfister P, Hobbie S, Brull C, Corti N, Vasella A, Westhof E, Bottger EC (2005) Mutagenesis of 16S rRNA C1409-G1491 base-pair differentiates between 6’OH and 6′NH3+ aminoglycosides. J Mol Biol 346: 467–475

    Article  PubMed  CAS  Google Scholar 

  • Pfister P, Hobbie S, Vicens Q, Bottger EC, Westhof E (2003 a) The molecular basis for A-site mutations conferring aminoglycoside resistance: relationship between ribosomal susceptibility and X-ray crystal structures. Chembiochem 4: 1078–1088

    Article  PubMed  CAS  Google Scholar 

  • Pfister P, Jenni S, Poehlsgaard J, Thomas A, Douthwaite S, Ban N, Bottger EC (2004) The structural basis of macrolide-ribosome binding assessed using mutagenesis of 23S rRNA positions 2058 and 2059. J Mol Biol 342: 1569–1581

    Article  PubMed  CAS  Google Scholar 

  • Pfister P, Risch M, Brodersen DE, Bottger EC (2003b) Role of 16S rRNA Heli× 44 in Ribosomal Resistance to Hygromycin B. Antimicrob Agents Chemother 47: 1496–1502

    Article  PubMed  CAS  Google Scholar 

  • Poehlsgaard J, Douthwaite S (2005) The bacterial ribosome as a target for antibiotics. Nat Rev Microbiol 3: 870–881

    Article  PubMed  CAS  Google Scholar 

  • Prezant TR, Agapian JV, Bohlman MC, Bu X, Oztas S, Qiu WQ, Arnos KS, Cortopassi GA, Jaber L, Rotter JI, et al. (1993) Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat Genet 4: 289–294

    Article  PubMed  CAS  Google Scholar 

  • Recht MI, Douthwaite S, Puglisi JD (1999) Basis for prokaryotic specificity of action of aminoglycoside antibiotics. EMBO J 18: 3133–3138

    Article  PubMed  CAS  Google Scholar 

  • Salas-Marco J, Bedwell DM (2005) Discrimination between de-fects in elongation fidelity and termination efficiency provides mechanistic insights into translational readthrough. J Mol Biol 348: 801–815

    Article  PubMed  CAS  Google Scholar 

  • Sander P, Prammananan T, Meier A, Frischkorn K, Bottger EC (1997) The role of ribosomal RNAs in macrolide resistance. Mol Microbiol 26: 469–480

    Article  PubMed  CAS  Google Scholar 

  • Schacht J (1986) Molecular mechanisms of drug-induced hearing loss. Hear Res 22: 297–304

    Article  PubMed  CAS  Google Scholar 

  • Schatz A, Bugie E, Waksman SA (1944) Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Proceedings of the Society for Experimental Biology and Medicine 55: 66–69

    CAS  Google Scholar 

  • Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74: 739–789

    Article  PubMed  CAS  Google Scholar 

  • Sha SH, Qiu JH, Schacht J (2006) Aspirin to prevent gentamicin-induced hearing loss. N Engl J Med 354: 1856–1857

    Article  PubMed  CAS  Google Scholar 

  • Sha SH, Schacht J (1999) Stimulation of free radical formation by aminoglycoside antibiotics. Hear Res 128: 112–118

    Article  PubMed  CAS  Google Scholar 

  • Sigmund CD, Ettayebi M, Morgan EA (1984) Antibiotic resistance mutations in 16S and 23S ribosomal RNA genes of Escherichia coli. Nucleic Acids Res 12: 4653–4663

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Ursic D, Davies J (1979) Phenotypic suppression and misreading Saccharomyces cerevisiae. Nature 277: 146–148

    Article  PubMed  CAS  Google Scholar 

  • Sor F, Fukuhara H (1982) Identification of two erythromycin resistance mutations in the mitochondrial gene coding for the large ribosomal RNA in yeast. Nucleic Acids Res 10: 6571–6577

    Article  PubMed  CAS  Google Scholar 

  • Vakulenko SB, Mobashery S (2003) Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev 16: 430–450

    Article  PubMed  CAS  Google Scholar 

  • Vicens Q, Westhof E (2001) Crystal structure of paromomycin docked into the eubacterial ribosomal decoding A site. Structure 9: 647–658

    Article  PubMed  CAS  Google Scholar 

  • Vicens Q, Westhof E (2003) Crystal structure of geneticin bound to a bacterial 16S ribosomal RNA A site oligonucleotide. J Mol Biol 326: 1175–1188

    Article  PubMed  CAS  Google Scholar 

  • Weixlbaumer A, Jin H, Neubauer C, Voorhees RM, Petry S, Kelley AC, Ramakrishnan V (2008) Insights into translational termination from the structure of RF2 bound to the ribosome. Science 322: 953–956

    Article  PubMed  CAS  Google Scholar 

  • Youngman EM, He SL, Nikstad LJ, Green R (2007) Stop codon recognition by release factors induces structural rearrangement of the ribosomal decoding center that is productive for peptide release. Mol Cell 28: 533–543

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Li R, Wang Q, Yan Q, Deng JH, Han D, Bai Y, Young WY, Guan MX (2004) Maternally inherited aminoglycoside-induced and nonsyndromic deafness is associated with the novel C1494T mutation in the mitochondrial 12S rRNA gene in a large Chinese family. Am J Hum Genet 74: 139–152.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Akbergenov, R. et al. (2011). Decoding and deafness: Two sides of a coin. In: Rodnina, M.V., Wintermeyer, W., Green, R. (eds) Ribosomes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0215-2_20

Download citation

Publish with us

Policies and ethics