Skip to main content

Mutations in 16S rRNA that decrease the fidelity of translation

  • Chapter
Ribosomes

Abstract

In the past decade, tremendous progress has been made in elucidating the structure and function of the ribosome (reviewed in Schmeing and Ramakrishnan, 2009). Numerous x-ray crystal structures and cryo-electron microscopic (cryo-EM) reconstructions of the ribosome with and without various substrates, factors, and antibiotics have been solved. At the same time, extensive biochemical studies have led to compelling kinetic models for the major steps of protein synthesis. While these studies give us a high-resolution picture of the ribosome and suggest a series of events involved in translation, the roles of specific ribosomal elements in particular events of the process remain unclear. Studies of mutations that confer altered function, particularly those in rRNA, will undoubtedly provide insight about these structure-function relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdi NM, Fredrick, K (2005) Contribution of 16S rRNA nucleotides forming the 30S subunit A and P sites to translation in Escherichia coli. RNA 11: 1624–1632

    Article  PubMed  CAS  Google Scholar 

  • Allen PN, Noller HF (1991) A single base substitution in 16S ribosomal RNA suppresses streptomycin dependence and increases the frequency of translational errors. Cell 66: 141–148

    Article  PubMed  CAS  Google Scholar 

  • Arkov AL, Freistroffer DV, Ehrenberg M, Murgola EJ (1998) Mutations in RNAs of both ribosomal subunits cause defects in translation termination. EMBO J 17: 1507–1514

    Article  PubMed  CAS  Google Scholar 

  • Arkov AL, Freistroffer DV, Pavlov MY, Ehrenberg M, Murgola EJ (2000) Mutations in conserved regions of ribosomal RNAs decrease the productive association of peptide-chain release factors with the ribosome during translation termination. Biochimie 82: 671–682

    Article  PubMed  CAS  Google Scholar 

  • Carter AP, Clemons WM, Jr., Brodersen DE, Morgan-Warren RJ, Hartsch T, Wimberly BT, Ramakrishnan, V (2001) Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 291: 498–501

    Article  PubMed  CAS  Google Scholar 

  • Cupples CG, Miller JH (1988) Effects of amino acid substitutions at the active site in Escherichia coli beta-galactosidase. Genetics 120: 637–644

    PubMed  CAS  Google Scholar 

  • Cupples CG, Miller JH (1989) A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc Natl Acad Sci USA 86: 5345–5349

    Article  PubMed  CAS  Google Scholar 

  • Dallas A, Noller HF (2001) Interaction of translation initiation factor 3 with the 30S ribosomal subunit. Mol Cell 8: 855–864

    Article  PubMed  CAS  Google Scholar 

  • Devaraj A, Shoji S, Holbrook ED, Fredrick, K (2009) A role for the 30S subunit E site in maintenance of the translational reading frame. RNA 15: 255–265

    Article  PubMed  CAS  Google Scholar 

  • Feliu JX, Villaverde, A (1998) Engineering of solvent-exposed loops in Escherichia coli beta-galactosidase. FEBS Lett 434: 23–27

    Article  PubMed  CAS  Google Scholar 

  • Fu C, Parker, J (1994) A ribosomal frameshifting error during translation of the argI mRNA of Escherichia coli. Mol Gen Genet 243: 434–441

    PubMed  CAS  Google Scholar 

  • Gregory ST, Dahlberg AE (1995) Nonsense suppressor and antisuppressor mutations at the 1409–1491 base pair in the decoding region of Escherichia coli 16S rRNA. Nucleic Acids Res 23: 4234–4238

    Article  PubMed  CAS  Google Scholar 

  • Haggerty TJ, Lovett ST (1997) IF3-mediated suppression of a GUA initiation codon mutation in the recJ gene of Escherichia coli. J Bacteriol 179: 6705–6713

    PubMed  CAS  Google Scholar 

  • Hui A, and de Boer HA (1987) Specialized ribosome system: preferential translation of a single mRNA species by a subpopulation of mutated ribosomes in Escherichia coli. Proc Natl Acad Sci USA 84: 4762–4766

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Holland-Staley CA, Cunningham PR (1996) Genetic analysis of the Shine-Dalgarno interaction: selection of alternative functional mRNA-rRNA combinations. RNA 2: 1270–1285

    PubMed  CAS  Google Scholar 

  • Leger M, Dulude D, Steinberg SV, Brakier-Gingras, L (2007) The three transfer RNAs occupying the A, P and E sites on the ribosome are involved in viral programmed-1 ribosomal frameshift. Nucleic Acids Res 35: 5581–5592

    Article  PubMed  CAS  Google Scholar 

  • Lodmell JS, Dahlberg AE (1997) A conformational switch in Escherichia coli 16S ribosomal RNA during decoding of messenger RNA. Science 277: 1262–1267

    Article  PubMed  CAS  Google Scholar 

  • Maisnier-Patin S, Paulander W, Pennhag A, Andersson DI (2007) Compensatory evolution reveals functional interactions between ribosomal proteins S12, L14 and L19. J Mol Biol 366: 207–215

    Article  PubMed  CAS  Google Scholar 

  • McClory SP, Leisring JM, Qin D, Fredrick, K (2010) Missense suppressor mutations in 16S rRNA reveal the importance of helices h8 and h 14 in aminoacyl-tRNA selection. RNA 16: 1925–1934

    Article  PubMed  CAS  Google Scholar 

  • Moine H, Dahlberg AE (1994) Mutations in helix 34 of Escherichia coli 16 S ribosomal RNA have multiple effects on ribosome function and synthesis. J Mol Biol 243: 402–412

    Article  PubMed  CAS  Google Scholar 

  • Murgola EJ, Pagel FT, Hijazi KA, Arkov AL, Xu W, Zhao SQ (1995) Variety of nonsense suppressor phenotypes associated with mutational changes at conserved sites in Escherichia coli ribosomal RNA. Biochem Cell Biol 73: 925–931

    Article  PubMed  CAS  Google Scholar 

  • O’ Connor M, Thomas CL, Zimmermann RA, Dahlberg AE (1997) Decoding fidelity at the ribosomal A and P sites: influence of mutations in three different regions of the decoding domain in 16S rRNA. Nucleic Acids Res 25: 1185–1193

    Article  Google Scholar 

  • Ogle JM, Brodersen DE, Clemons WM, Jr., Tarry MJ, Carter AP, Ramakrishnan, V (2001) Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292: 897–902

    Article  PubMed  CAS  Google Scholar 

  • Ogle JM, Ramakrishnan, V (2005) Structural insights into translational fidelity. Annu Rev Biochem 74: 129–177

    Article  PubMed  CAS  Google Scholar 

  • Pagel FT, Zhao SQ, Hijazi KA, Murgola EJ (1997) Phenotypic heterogeneity of mutational changes at a conserved nucleotide in 16 S ribosomal RNA. J Mol Biol 267: 1113–1123

    Article  PubMed  CAS  Google Scholar 

  • Qin D, Abdi NM, Fredrick, K (2007) Characterization of 16S rRNA mutations that decrease the fidelity of translation initiation. RNA 13: 2348–2355

    Article  PubMed  CAS  Google Scholar 

  • Qin D, Fredrick, K (2009) Control of translation initiation involves a factor-induced rearrangement of helix 44 of 16S ribosomal RNA. Mol Microbiol 71: 1239–1249

    Article  PubMed  CAS  Google Scholar 

  • Rosset R, Gorini, L (1969) A ribosomal ambiguity mutation. J Mol Biol 39: 95–112

    Article  PubMed  CAS  Google Scholar 

  • Schmeing TM, Ramakrishnan, V (2009) What recent ribosome structures have revealed about the mechanism of translation. Nature 461: 1234–1242

    Article  PubMed  CAS  Google Scholar 

  • Schmeing TM, Voorhees RM, Kelley AC, Gao YG, Murphy FV 4th, Weir JR, Ramakrishnan, V (2009) The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326: 688–694

    Article  PubMed  CAS  Google Scholar 

  • Selmer M, Dunham CM, Murphy FV 4th, Weixlbaumer A, Petry S, Kelley AC, Weir JR, Ramakrishnan, V (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313: 1935–1942

    Article  PubMed  CAS  Google Scholar 

  • Strigini P, Gorini, L (1970) Ribosomal mutations affecting efficiency of amber suppression. J Mol Biol 47: 517–530

    Article  PubMed  CAS  Google Scholar 

  • Sussman JK, Simons EL, Simons RW (1996) Escherichia coli translation initiation factor 3 discriminates the initiation codon in vivo. Mol Microbiol 21: 347–360

    Article  PubMed  CAS  Google Scholar 

  • Tapprich WE, Goss DJ, Dahlberg AE (1989) Mutation at position 791 in Escherichia coli 16S ribosomal RNA affects processes involved in the initiation of protein synthesis. Proc Natl Acad Sci USA 86: 4927–4931

    Article  PubMed  CAS  Google Scholar 

  • Velichutina IV, Dresios J, Hong JY, Li C, Mankin A, Synetos D, Liebman SW (2000) Mutations in helix 27 of the yeast Saccharomyces cerevisiae 18S rRNA affect the function of the decoding center of the ribosome. RNA 6: 1174–1184

    Article  PubMed  CAS  Google Scholar 

  • Villa E, Sengupta J, Trabuco LG, LeBarron J, Baxter WT, Shaikh TR, Grassucci RA, Nissen P, Ehrenberg M, Schulten K, Frank, J (2009) Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. Proc Natl Acad Sci USA 106: 1063–1068

    Article  PubMed  Google Scholar 

  • Wimberly BT, Brodersen DE, Clemons WM, Jr., Morgan-Warren RJ, Carter AP, Vonrhein C, Hartsch T, Ramakrishnan, V (2000) Structure of the 30S ribosomal subunit. Nature 407: 327–339

    Article  PubMed  CAS  Google Scholar 

  • Yassin A, Fredrick K, Mankin AS (2005) Deleterious mutations in small subunit ribosomal RNA identify functional sites and potential targets for antibiotics. Proc Natl Acad Sci USA 102: 16620–16625

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Dunkle JA, Cate JH (2009) Structures of the ribosome in intermediate states of ratcheting. Science 325: 1014–1017

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

McClory, S.P., Devaraj, A., Qin, D., Leisring, J.M., Fredrick, K. (2011). Mutations in 16S rRNA that decrease the fidelity of translation. In: Rodnina, M.V., Wintermeyer, W., Green, R. (eds) Ribosomes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0215-2_19

Download citation

Publish with us

Policies and ethics