Skip to main content
Book cover

Ribosomes pp 225–235Cite as

Rate and accuracy of messenger RNA translation on the ribosome

  • Chapter

Abstract

In the bacterial cell there is an ever evolving network of metabolic pathways, with well-defined flow-stoichiometries for maximal yield of biomass in different growth contexts (Ibarra et al., 2002; Feist et al., 2009). In line with this, any change in size or kinetic efficiency of an enzyme or macromolecular complex like the ribosome will affect the growth rate of the cell (Ehrenberg and Kurland, 1984; Kurland et al., 2003). When the intracellular control systems maintain optimal flow couplings for maximal growth rate, there is a simple relation between change in size or kinetic efficiency of an enzyme system and the bacterial growth rate. This can be used to assess the fitness loss or gain of mutations in enzyme systems and thus the probability of fixation of gain of function mutations (Kurland et al., 2003). With μ 0 defined as the wild type (exponential) growth rate, μ the altered growth rate in a mutant, δμ = μ − μ 0 and s the fitness parameter, we have μ = μ 0 (1+s), where s = δμ/μ0.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alatossava T, Jutte H, Kuhn A, Kellenberger E (1985) Manipulation of intracellular magnesium content in polymyxin B non-apeptide-sensitized Escherichia coli by ionophore A23 187. J Bacteriol 162: 413–419

    PubMed  CAS  Google Scholar 

  • Beringer M, Bruell C, Xiong L, Pfister P, Bieling P, Katunin VI, Mankin AS, Bottger EC, Rodnina MV (2005) Essential mechanisms in the catalysis of peptide bond formation on the ribosome. J Biol Chem 280: 36065–36072

    Article  PubMed  CAS  Google Scholar 

  • Beringer M, Rodnina MV (2007) Importance of tRNA interactions with 23S rRNA for peptide bond formation on the ribosome: studies with substrate analogs. Biol Chem 388: 687–691

    Article  PubMed  CAS  Google Scholar 

  • Bieling P, Beringer M, Adio S, Rodnina MV (2006) Peptide bond formation does not involve acid-base catalysis by ribosomal residues. Nat Struct Mol Biol 13: 423–428

    Article  PubMed  CAS  Google Scholar 

  • Bilgin N, Claesens F, Pahverk H, Ehrenberg M (1992) Kinetic properties of Escherichia coli ribosomes with altered forms of S12. J Mol Biol 224: 1011–1027

    Article  PubMed  CAS  Google Scholar 

  • Bilgin N, Ehrenberg M, Kurland C (1988) Is translation inhibited by noncognate ternary complexes? FEBS Lett 233: 95–99

    Article  PubMed  CAS  Google Scholar 

  • Bremer H, Dennis PP (2008) Modulation of Chemical Composition and Other Parameters of the Cell at Different Exponential Growth Rates. In: Böck A, Curtiss III, R, Kaper JB, Karp PD, Neidhardt FC, Nyström T, Slauch JM, Squires CL, Ussery D, Schaechter E (eds.), EcoSal-Escherichia coli and Salmonella: Cellular and Molecular Biology. http://www.ecosal.org. ASM Press, Washington, DC

    Google Scholar 

  • Brunelle JL, Youngman E M., Sharma D, Green R (2006) The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity. RNA 12: 33–39

    Article  PubMed  CAS  Google Scholar 

  • Carlsson J, Boukharta L, Åqvist J (2008) Combining docking, molecular dynamics and the linear interaction energy method to predict binding modes and affinities for non-nucleoside inhibitors to HIV-1 reverse transcriptase. J Med Chem 51: 2648–2656

    Article  PubMed  CAS  Google Scholar 

  • Edelmann P, Gallant J (1977) Mistranslation in E. coli. Cell 10: 131–137

    Article  PubMed  CAS  Google Scholar 

  • Ehrenberg M, Bilgin N, Kurland C (1990) Design and use of a fast and accurate in vitro translation system. In Spedding G (ed.), Ribosomes and protein synthesis. A practical approach. IRL Press at Oxford University Press, Oxford, UK, pp 101–128

    Google Scholar 

  • Ehrenberg M, Kurland CG (1984) Costs of accuracy determined by a maximal growth rate constraint. Q Rev Biophys 17: 45–82

    Article  PubMed  CAS  Google Scholar 

  • Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7: 129–143

    PubMed  CAS  Google Scholar 

  • Fersht A (1999) Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. W. H. Freeman and Company, New York

    Google Scholar 

  • Gromadski KB, Daviter T, Rodnina MV (2006) A uniform response to mismatches in codon-anticodon complexes ensures ribo-somal fidelity. Mol Cell 21: 369–377

    Article  PubMed  CAS  Google Scholar 

  • Gromadski KB, Rodnina MV (2004) Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. Mol Cell 13: 191–200

    Article  PubMed  CAS  Google Scholar 

  • Hansen JL, Schmeing TM, Moore PB, Steitz TA (2002) Structural insights into peptide bond formation. Proc Natl Acad Sci USA 99: 11670–11675

    Article  PubMed  CAS  Google Scholar 

  • Hay RW, Morris PJ (1970) Proton ionisation constants and kinetics of base hydrolysis of some α-amino-acid esters in aqueous solution. Part II. J Chem Soc B, 1577–1582

    Google Scholar 

  • Hay RW, Porter LJ (1967) Proton ionisation constants and kinetics of base hydrolysis of some α-amino-acid esters in aqueous solution. J Chem Soc B, 1261–1264

    Google Scholar 

  • Hesslein AE, Katunin VI, Beringer M, Kosek AB, Rodnina MV, Strobel SA (2004) Exploration of the conserved A+C wobble pair within the ribosomal peptidyl transferase center using affinity purified mutant ribosomes. Nucleic Acids Res 32: 3760–3770

    Article  PubMed  CAS  Google Scholar 

  • Hopfield JJ (1974) Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc Natl Acad Sci USA 71: 4135–4139

    Article  PubMed  CAS  Google Scholar 

  • Ibarra RU, Edwards JS, Palsson BO (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420: 186–189

    Article  PubMed  CAS  Google Scholar 

  • Jelenc PC, Kurland CG (1979) Nucleoside triphosphate regeneration decreases the frequency of translation errors. Proc Natl Acad Sci USA 76: 3174–3178

    Article  PubMed  CAS  Google Scholar 

  • Johansson M, Bouakaz E, Lovmar M, Ehrenberg M (2008 a) The kinetics of ribosomal peptidyl transfer revisited. Mol Cell 30: 589–598

    Article  PubMed  CAS  Google Scholar 

  • Johansson M, Ieong KW, Trobro S, Strazewski P, Aqvist J, Pavlov MY, and Ehrenberg M (2011) pH-sensitivity of the ribosomal peptidyl transfer reaction dependent on the identity of the A-site aminoacyl-tRNA. Proc Natl Acad Sci USA 108: 79–84

    Article  PubMed  Google Scholar 

  • Johansson M, Lovmar M, Ehrenberg M (2008 b) Rate and accuracy of bacterial protein synthesis revisited. Curr Opin Microbiol 11: 141–147

    Article  PubMed  CAS  Google Scholar 

  • Katunin VI, Muth GW, Strobel SA, Wintermeyer W, Rodnina MV (2002) Important contribution to catalysis of peptide bond formation by a single ionizing group within the ribosome. Mol Cell 10: 339–346

    Article  PubMed  CAS  Google Scholar 

  • Kramer EB, Farabaugh PJ (2007) The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA 13: 87–96

    Article  PubMed  CAS  Google Scholar 

  • Kurland CG, Canback B, Berg OG (2003) Horizontal gene transfer: a critical view. Proc Natl Acad Sci USA 100: 9658–9662

    Article  PubMed  CAS  Google Scholar 

  • Kurland CG, Ehrenberg M (1984) Optimization of translation accuracy. Prog Nucleic Acid Res Mol Biol 31: 191–219

    Article  PubMed  CAS  Google Scholar 

  • Ninio J (1975) Kinetic amplification of enzyme discrimination. Biochimie 57: 587–595

    Article  PubMed  CAS  Google Scholar 

  • Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289: 920–930

    Article  PubMed  CAS  Google Scholar 

  • Ogle JM, Ramakrishnan V (2005) Structural insights into translational fidelity. Annu Rev Biochem 74: 129–177

    Article  PubMed  CAS  Google Scholar 

  • Okuda K, Seila AC, Strobel SA (2005) Uncovering the enzymatic pKa of the ribosomal peptidyl transferase reaction utilizing a fluorinated puromycin derivative. Biochemistry 44: 6675–6684

    Article  PubMed  CAS  Google Scholar 

  • Pape T, Wintermeyer W, Rodnina M (1999) Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome. Embo J, 18, 3800–3807

    Article  PubMed  CAS  Google Scholar 

  • Pape T, Wintermeyer W, Rodnina MV (1998) Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. Embo J, 17, 7490–7497

    Article  PubMed  CAS  Google Scholar 

  • Pavlov MY, Watts RE, Tan Z, Cornish VW, Ehrenberg M, Forster AC (2009) Slow peptide bond formation by proline and other N-alkylamino acids in translation. Proc Natl Acad Sci USA, 106, 50–54

    Article  PubMed  Google Scholar 

  • Rodnina MV, Fricke R, Wintermeyer W (1994) Transient conformational states of aminoacyl-tRNA during ribosome binding catalyzed by elongation factor Tu. Biochemistry 33: 12267–12275

    Article  PubMed  CAS  Google Scholar 

  • Ruusala T, Andersson D, Ehrenberg M, Kurland CG (1984) Hyperaccurate ribosomes inhibit growth. Embo J 3: 2575–2580

    PubMed  CAS  Google Scholar 

  • Ruusala T, Ehrenberg M, Kurland CG (1982) Is there proofreading during polypeptide synthesis? Embo J, 1, 741–745

    PubMed  CAS  Google Scholar 

  • Schmeing TM, Huang KS, Strobel SA, Steitz TA (2005) An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature 438: 520–524

    Article  PubMed  CAS  Google Scholar 

  • Schroeder GK, Wolfenden R (2007) The rate enhancement produced by the ribosome: an improved model. Biochemistry 46: 4037–4044

    Article  PubMed  CAS  Google Scholar 

  • Selmer M, Dunham CM, Murphy FV 4th, Weixlbaumer A, Petry S, Kelley AC, Weir JR, Ramakrishnan V (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313: 1935–1942

    Article  PubMed  CAS  Google Scholar 

  • Sievers A, Beringer M, Rodnina MV, Wolfenden R (2004) The ribosome as an entropy trap. Proc Natl Acad Sci USA, 101, 7897–7901

    Article  PubMed  CAS  Google Scholar 

  • Stahl G, Salem SN, Chen L, Zhao B, Farabaugh PJ (2004) Translational accuracy during exponential, postdiauxic, and stationary growth phases in Saccharomyces cerevisiae. Eukaryot Cell 3: 331–338

    Article  PubMed  CAS  Google Scholar 

  • Thompson RC, Stone PJ (1977) Proofreading of the codon-anticodon interaction on ribosomes. Proc Natl Acad Sci USA, 74, 198–202

    Article  PubMed  CAS  Google Scholar 

  • Trobro S and Åqvist J (2005) Mechanism of peptide bond synthesis on the ribosome. Proc Natl Acad Sci USA, 102, 12395–12400

    Article  PubMed  CAS  Google Scholar 

  • Trobro S and Åqvist J (2006) Analysis of predictions for the catalytic mechanism of ribosomal peptidyl transfer. Biochemistry 45: 7049–7056

    Article  PubMed  CAS  Google Scholar 

  • Wagner EG, Jelenc PC, Ehrenberg M, Kurland CG (1982) Rate of elongation of polyphenylalanine in vitro. Eur J Biochem 122: 193–197

    Article  PubMed  CAS  Google Scholar 

  • Weiss RL, Kimes BW, Morris DR (1973) Cations and ribosome structure. 3. Effects on the 30S and 50S subunits of replacing bound Mg 2+ by inorganic cations. Biochemistry 12: 450–456

    Article  PubMed  CAS  Google Scholar 

  • Weiss RL, Morris DR (1973) Cations and ribosome structure. I. Effects on the 30S subunit of substituting polyamines for magnesium ion. Biochemistry 12: 435–441

    Article  PubMed  CAS  Google Scholar 

  • Wold F, Ballou CE (1957) Studies on the enzyme enolase. I. Equilibrium studies. J Biol Chem 227: 301–312

    PubMed  CAS  Google Scholar 

  • Wolfenden R (1963) The mechanism of hydrolysis of amino acyl RNA. Biochemistry 2: 1090–1092

    Article  PubMed  CAS  Google Scholar 

  • Young R, Bremer H (1976) Polypeptide-chain-elongation rate in Escherichia coli B/r as a function of growth rate. Biochem J, 160, 185–194

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Johansson, M., Ieong, K.W., Åqvist, J., Pavlov, M.Y., Ehrenberg, M. (2011). Rate and accuracy of messenger RNA translation on the ribosome. In: Rodnina, M.V., Wintermeyer, W., Green, R. (eds) Ribosomes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0215-2_18

Download citation

Publish with us

Policies and ethics