Skip to main content

Mechanisms of decoding and peptide bond formation

  • Chapter
Ribosomes

Abstract

During protein synthesis, the ribosome translates the genetic information carried by the mRNA into the amino acid sequence of proteins with the help of adaptor molecules, aminoacyl-tRNAs (aa-tRNA). In each round of elongation, the ribosome selects the correct (cognate) aa-tRNA corresponding to the mRNA codon from the total cellular pool of aa-tRNAs. The delivery of aa-tRNA to the decoding site (A site), where tRNA recognition and selection takes place, is brought about by elongation factor Tu (EF-Tu). The recognition of aa-tRNA by the ribosome occurs via a series of selection steps that control the stepwise movement of aa-tRNA from EF-Tu into the A site and the accommodation of the aminoacyl end of the aa-tRNA in the peptidyl transferase center. Accommodation is followed by peptide bond formation between the A-site aa-tRNA and peptidyl-tRNA in the P site that results in the elongation of the nascent peptide chain by one amino acid. The functional centers of the ribosomes are composed mostly of rRNA. Thus, understanding decoding and peptide bond formation requires answers to several fundamental questions: (i) how does the rRNA machinery recognize tRNAs and mRNAs? (ii) how does the ribosome discriminate between very similar cognate and near-cognate tRNAs which change identity in every round of elongation? (iii) how does the ribosome balance the requirements for speed and accuracy? and (iv) how does rRNA catalyze peptide bond formation? The goal of this review is to summarize the recent progress towards answering these questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Ã… resolution. Science 289: 905–920

    Article  PubMed  CAS  Google Scholar 

  • Bashan A, Agmon I, Zarivach R, Schluenzen F, Harms J, Berisio R, Bartels H, Franceschi F, Auerbach T, Hansen HA, Kossoy E, Kessler M, Yonath A (2003) Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. Mol Cell 11: 91–102

    Article  PubMed  CAS  Google Scholar 

  • Berchtold H, Reshetnikova L, Reiser CO, Schirmer NK, Sprinzl M, Hilgenfeld R (1993) Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 365: 126–132

    Article  PubMed  CAS  Google Scholar 

  • Beringer M, Adio S, Wintermeyer W, Rodnina MV (2003) The G2447A mutation does not affect ionization of a ribosomal group taking part in peptide bond formation. RNA 9: 919–922

    Article  PubMed  CAS  Google Scholar 

  • Beringer M, Bruell C, Xiong L, Pfister P, Bieling P, Katunin VI, Mankin AS, Bottger EC, Rodnina MV (2005) Essential mechanisms in the catalysis of peptide bond formation on the ribosome. J Biol Chem 280: 36 065–36 072

    Article  CAS  Google Scholar 

  • Beringer M, Rodnina MV (2007) The ribosomal peptidyl transferase. Mol Cell 26: 311–321

    Article  PubMed  CAS  Google Scholar 

  • Bernado P, Modig K, Grela P, Svergun DI, Tchorzewski M, Pons M, Akke M (2010) Structure and dynamics of ribosomal protein L12: An ensemble model based on SAXS and NMR relaxation. Biophys J 98: 2374–2382

    Article  PubMed  CAS  Google Scholar 

  • Bieling P, Beringer M, Adio S, Rodnina MV (2006) Peptide bond formation does not involve acid-base catalysis by ribosomal residues. Nat Struct Mol Biol 13: 423–428

    Article  PubMed  CAS  Google Scholar 

  • Blanchard SC, Gonzalez RL, Kim HD, Chu S, Puglisi JD (2004) tRNA selection and kinetic proofreading in translation. Nat Struct Mol Biol 11: 1008–1014

    Article  PubMed  CAS  Google Scholar 

  • Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129: 865–877

    Article  PubMed  CAS  Google Scholar 

  • Bremer H, Dennis PP. 1987. Modulation of chemical composition and other parameters of the cell by growth rate. In: Neidhardt FC, ed. Escherichia coli and Salmonella typhimurium: cellular and molecular biology. Washington, DC: American Society for Microbiology. pp 1553–1569

    Google Scholar 

  • Brunelle JL, Youngman EM, Sharma D, Green R (2006) The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity. RNA 12: 33–39

    Article  PubMed  CAS  Google Scholar 

  • Burakovsky DE, Sergiev PV, Steblyanko MA, Kubarenko AV, Konevega AL, Bogdanov AA, Rodnina MV, Dontsova OA (2010) Mutations at the accommodation gate of the ribosome impair RF2-dependent translation termination. RNA 16: 1848–1853

    Article  PubMed  CAS  Google Scholar 

  • Carter AP, Clemons WM, Jr., Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407: 340–348

    Article  PubMed  CAS  Google Scholar 

  • Changalov MM, Ivanova GD, Rangelov MA, Acharya P, Acharya S, Minakawa N, Foldesi A, Stoineva IB, Yomtova VM, Roussev CD, Matsuda A, Chattopadhyaya J, Petkov DD (2005) 2′/3′-O-peptidyl adenosine as a general base catalyst of its own external peptidyl transfer: implications for the ribosome catalytic mechanism. Chem Biochem 6: 992–996

    CAS  Google Scholar 

  • Cochella L, Green R (2005) An active role for tRNA in decoding beyond codon: anticodon pairing. Science 308: 1178–1180

    Article  PubMed  CAS  Google Scholar 

  • Das GK, Bhattacharyya D, Burma DP (1999) A possible mechanism of peptide bond formation on ribosome without mediation of peptidyl transferase. J theor Biol 200: 193–205

    Article  PubMed  CAS  Google Scholar 

  • Daviter T, Gromadski KB, Rodnina MV (2006) The ribosome’s response to codon-anticodon mismatches. Biochimie 88: 1001–1011

    Article  PubMed  CAS  Google Scholar 

  • Daviter T, Wieden H-J, Rodnina MV (2003) Essential role of histidine 84 in elongation factor Tu for the chemical step of GTP hydrolysis on the ribosome. J Mol Biol 332: 689–699

    Article  PubMed  CAS  Google Scholar 

  • Diaconu M, Kothe U, Schlunzen F, Fischer N, Harms JM, Tonevitsky AG, Stark H, Rodnina MV, Wahl MC (2005) Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation. Cell 121: 991–1004

    Article  PubMed  CAS  Google Scholar 

  • Diedrich G, Spahn CM, Stelzl U, Schafer MA, Wooten T, Bochkariov DE, Cooperman BS, Traut RR, Nierhaus KH (2000) Ribosomal protein L2 is involved in the association of the ribosomal subunits, tRNA binding to A and P sites and peptidyl transfer. EMBO J 19: 5241–5150

    Article  PubMed  CAS  Google Scholar 

  • Dorner S, Polacek N, Schulmeister U, Panuschka C, Barta A (2002) Molecular aspects of the ribosomal peptidyl transferase. Biochem Soc Trans 30: 1131–1136

    Article  PubMed  CAS  Google Scholar 

  • Drummond DA, Wilke CO (2009) The evolutionary consequences of erroneous protein synthesis. Nat Rev Genet 10: 715–724

    Article  PubMed  CAS  Google Scholar 

  • Effraim PR, Wang J, Englander MT, Avins J, Leyh TS, Gonzalez RL, Jr., Cornish VW (2009) Natural amino acids do not require their native tRNAs for efficient selection by the ribosome. Nat Chem Biol 5: 947–953

    Article  PubMed  CAS  Google Scholar 

  • Erlacher MD, Lang K, Wotzel B, Rieder R, Micura R, Polacek N (2006) Efficient ribosomal peptidyl transfer critically relies on the presence of the ribose 2′-OH at A2451 of 23S rRNA. J Am Chem Soc 128: 4453–4459

    Article  PubMed  CAS  Google Scholar 

  • Fahnestock S, Neumann H, Shashoua V, Rich A (1970) Ribosomecatalyzed ester formation. Biochemistry 9: 2477–2483

    Article  PubMed  CAS  Google Scholar 

  • Gromadski KB, Daviter T, Rodnina MV (2006) A uniform response to mismatches in codon-anticodon complexes ensures ribosomal fidelity. Mol Cell 21: 369–377

    Article  PubMed  CAS  Google Scholar 

  • Gromadski KB, Rodnina MV (2004a) Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. Mol Cell 13: 191–200

    Article  PubMed  CAS  Google Scholar 

  • Gromadski KB, Rodnina MV (2004b) Streptomycin interferes with conformational coupling between codon recognition and GTPase activation on the ribosome. Nat Struct Mol Biol 11: 316–322

    Article  PubMed  CAS  Google Scholar 

  • Hesslein AE, Katunin VI, Beringer M, Kosek AB, Rodnina MV, Strobel SA (2004) Exploration of the conserved A+C wobble pair within the ribosomal peptidyl transferase center using affinity purified mutant ribosomes. Nucl Acids Res 32: 3760–3770

    Article  PubMed  CAS  Google Scholar 

  • Ilag LL, Videler H, McKay AR, Sobott F, Fucini P, Nierhaus KH, Robinson CV (2005) Heptameric (L12)6/L10 rather than canonical pentameric complexes are found by tandem MS of intact ribosomes from thermophilic bacteria. Proc Natl Acad Sci USA 102: 8192–8197

    Article  PubMed  CAS  Google Scholar 

  • Jenner L, Demeshkina N, Yusupova G, Yusupov M (2010) Structural rearrangements of the ribosome at the tRNA proofreading step. Nat Struct Mol Biol 17: 1072–1078

    Article  PubMed  CAS  Google Scholar 

  • Johansson M, Bouakaz E, Lovmar M, Ehrenberg M (2008) The kinetics of ribosomal peptidyl transfer revisited. Mol Cell 30: 589–598

    Article  PubMed  CAS  Google Scholar 

  • Katunin VI, Muth GW, Strobel SA, Wintermeyer W, Rodnina MV (2002) Important contribution to catalysis of peptide bond formation by a single ionizing group within the ribosome. Mol Cell 10: 339–346

    Article  PubMed  CAS  Google Scholar 

  • Kim DF, Green R (1999) Base-pairing between 23S rRNA and tRNA in the ribosomal A site. Mol Cell 4: 859–864

    Article  PubMed  CAS  Google Scholar 

  • Kingery DA, Pfund E, Voorhees RM, Okuda K, Wohlgemuth I, Kitchen DE, Rodnina MV, Strobel SA (2008) An uncharged amine in the transition state of the ribosomal peptidyl transfer reaction. Chem Biol 15: 493–500

    Article  PubMed  CAS  Google Scholar 

  • Knudsen C, Wieden HJ, Rodnina MV (2001) The importance of structural transitions of the switch II region for the functions of elongation factor Tu on the ribosome. J Biol Chem 276: 22183–22190

    Article  PubMed  CAS  Google Scholar 

  • Knudsen CR, Clark BF (1995) Site-directed mutagenesis of Arg58 and Asp86 of elongation factor Tu from Escherichia coli: effects on the GTPase reaction and aminoacyl-tRNA binding. Protein Eng 8: 1267–1273

    Article  PubMed  CAS  Google Scholar 

  • Koch M, Huang Y, Sprinzl M (2008) Peptide-bond synthesis on the ribosome: no free vicinal hydroxy group required on the terminal ribose residue of peptidyl-tRNA. Angew Chem Int Ed Engl 47: 7242–7245

    Article  PubMed  CAS  Google Scholar 

  • Konevega AL, Soboleva NG, Makhno VI, Semenkov YP, Wintermeyer W, Rodnina MV, Katunin VI (2004) Purine bases at position 37 of tRNA stabilize codon-anticodon interaction in the ribosomal A site by stacking and Mg+-dependent interactions. RNA 10: 90–101

    Article  PubMed  CAS  Google Scholar 

  • Kothe U, Rodnina MV (2006) Delayed release of inorganic phosphate from elongation factor Tu following GTP hydrolysis on the ribosome. Biochemistry 45: 12767–12774

    Article  PubMed  CAS  Google Scholar 

  • Kothe U, Rodnina MV (2007) Codon reading by tRNAAla with modified uridine in the wobble position. Mol Cell 25: 167–174

    Article  PubMed  CAS  Google Scholar 

  • Kothe U, Wieden HJ, Mohr D, Rodnina MV (2004) Interaction of helix D of elongation factor Tu with helices 4 and 5 of protein L7/12 on the ribosome. J Mol Biol 336: 1011–1021

    Article  PubMed  CAS  Google Scholar 

  • Kramer EB, Farabaugh PJ (2007) The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA 13: 87–96

    Article  PubMed  CAS  Google Scholar 

  • Krayevsky AA, Kukhanova MK (1979) The peptidyltransferase center of ribosomes. Prog Nucleic Acid Res Mol Biol 23: 1–51

    Article  PubMed  CAS  Google Scholar 

  • Liang ST, Xu YC, Dennis P, Bremer H (2000) mRNA composition and control of bacterial gene expression. J Bacteriol 182: 3037–3044

    Article  PubMed  CAS  Google Scholar 

  • Maden BE, Monro RE (1968) Ribosome-catalyzed peptidyl transfer. Effects of cations and pH value. Eur J Biochem 6: 309–316

    Article  PubMed  CAS  Google Scholar 

  • Maguire BA, Beniaminov AD, Ramu H, Mankin AS, Zimmermann RA (2005) A protein component at the heart of an RNA machine: the importance of protein L27for the function of the bacterial ribosome. Mol Cell 20: 427–435

    Article  PubMed  CAS  Google Scholar 

  • Mansilla F, Knudsen CR, Laurberg M, Clark BF (1997) Mutational analysis of Escherichia coli elongation factor Tu in search of a role for the N-terminal region. Protein Eng 10: 927–934

    Article  PubMed  CAS  Google Scholar 

  • Marshall RA, Aitken CE, Dorywalska M, Puglisi JD (2008) Translation at the single-molecule level. Annu Rev Biochem 77: 177–203

    Article  PubMed  CAS  Google Scholar 

  • McClory SP, Leisring JM, Qin D, Fredrick K (2010) Missense suppressor mutations in 16S rRNA reveal the importance of helices h8 and h14 in aminoacyl-tRNA selection. RNA 16: 1925–1934

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi T, Nomura T, Uchiumi T (2009) Engineering and characterization of the ribosomal L10-L12 stalk complex. A structural element responsible for high turnover of the elongation factor G-dependent GTPase. J Biol Chem 284: 85–92

    Article  PubMed  CAS  Google Scholar 

  • Mohr D, Wintermeyer W, Rodnina MV (2002) GTPase activation of elongation factors Tu and G on the ribosome. Biochemistry 41: 12 520–12 528

    Article  CAS  Google Scholar 

  • Netzer WJ, Hartl FU (1997) Recombination of protein domains facilitated by co-translational folding in eukaryotes. Nature 388: 343–349

    Article  PubMed  CAS  Google Scholar 

  • Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289: 920–930

    Article  PubMed  CAS  Google Scholar 

  • Noller HF, Hoffarth V, Zimniak L (1992) Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256: 1416–1419

    Article  PubMed  CAS  Google Scholar 

  • O’Connor M, Dahlberg AE (1995) The involvement of two distinct regions of 23 S ribosomal RNA in tRNA selection. J Mol Biol 254: 838–847

    Article  CAS  Google Scholar 

  • Ogle JM, Brodersen DE, Clemons WM, Jr., Tarry MJ, Carter AP, Ramakrishnan V (2001) Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292: 897–902

    Article  PubMed  CAS  Google Scholar 

  • Ogle JM, Carter AP, Ramakrishnan V (2003) Insights into the decoding mechanism from recent ribosome structures. Trends Biochem Sci 28: 259–266

    Article  PubMed  CAS  Google Scholar 

  • Ogle JM, Murphy FV, Tarry MJ, Ramakrishnan V (2002) Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111: 721–732

    Article  PubMed  CAS  Google Scholar 

  • Ogle JM, Ramakrishnan V (2005) Structural insights into translational fidelity. Annu Rev Biochem 74: 129–177

    Article  PubMed  CAS  Google Scholar 

  • Pan D, Zhang CM, Kirillov S, Hou YM, Cooperman BS (2008) Perturbation of the tRNA tertiary core differentially affects specific steps of the elongation cycle. J Biol Chem 283: 18431–18440

    Article  PubMed  CAS  Google Scholar 

  • Pape T, Wintermeyer W, Rodnina MV (1998) Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. EMBO J 17: 7490–7497

    Article  PubMed  CAS  Google Scholar 

  • Pape T, Wintermeyer W, Rodnina MV (1999) Induced fit in initial selection and proofreading of aminoacyl—tRNA on the ribosome. EMBO J 18: 3800–3807

    Article  PubMed  CAS  Google Scholar 

  • Pape T, Wintermeyer W, Rodnina MV (2000) Conformational switch in the decoding region of 16S rRNA during aminoacyl-tRNA selection on the ribosome. Nat Struct Biol 7: 104–107

    Article  PubMed  CAS  Google Scholar 

  • Parker J (1989) Errors and alternatives in reading the universal genetic code. Microbiol Rev 53: 273–298

    PubMed  CAS  Google Scholar 

  • Pavlov MY, Watts RE, Tan Z, Cornish VW, Ehrenberg M, Forster AC (2009) Slow peptide bond formation by proline and other N-alkylamino acids in translation. Proc Natl Acad Sci USA 106: 50–54

    Article  PubMed  CAS  Google Scholar 

  • Pestka S (1972) Peptidyl-puromycin synthesis on polyribosomes from Escherichia coli. Proc Natl Acad Sci USA 69: 624–628

    Article  PubMed  CAS  Google Scholar 

  • Piepenburg O, Pape T, Pleiss JA, Wintermeyer W, Uhlenbeck OC, Rodnina MV (2000) Intact aminoacyl-tRNA is required to trigger GTP hydrolysis by elongation factor Tu on the ribosome. Biochemistry 39: 1734–1738

    Article  PubMed  CAS  Google Scholar 

  • Polacek N, Gaynor M, Yassin A, Mankin AS (2001) Ribosomal peptidyl transferase can withstand mutations at the putative catalytic nucleotide. Nature 411: 498–501

    Article  PubMed  CAS  Google Scholar 

  • Proshkin S, Rahmouni AR, Mironov A, Nudler E (2010) Cooperation between translating ribosomes and RNA polymerase in transcription elongation. Science 328: 504–508

    Article  PubMed  CAS  Google Scholar 

  • Radzicka A, Wolfenden R (1995) A proficient enzyme. Science 267: 90–93

    Article  PubMed  CAS  Google Scholar 

  • Rattenborg T, Nautrup Pedersen G, Clark BF, Knudsen CR (1997) Contribution of Arg288 of Escherichia coli elongation factor Tu to translational functionality. Eur J Biochem 249: 408–414

    Article  PubMed  CAS  Google Scholar 

  • Rodnina MV, Fricke R, Kuhn L, Wintermeyer W (1995) Codon-dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome. EMBO J 14: 2613–2619

    PubMed  CAS  Google Scholar 

  • Rodnina MV, Fricke R, Wintermeyer W (1994) Transient conformational states of aminoacyl-tRNA during ribosome binding catalyzed by elongation factor Tu. Biochemistry 33: 12267–12275

    Article  PubMed  CAS  Google Scholar 

  • Rodnina MV, Gromadski KB, Kothe U, Wieden HJ (2005) Recognition and selection of tRNA in translation. FEBS Lett 579: 938–942

    Article  PubMed  CAS  Google Scholar 

  • Rodnina MV, Pape T, Fricke R, Kuhn L, Wintermeyer W (1996) Initial binding of the elongation factor Tu·GTP·aminoacyl-tRNA complex preceding codon recognition on the ribosome. J Biol Chem 271: 646–652

    Article  PubMed  CAS  Google Scholar 

  • Rodnina MV, Wintermeyer W (2001) Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. Annu Rev Biochem 70: 415–435

    Article  PubMed  CAS  Google Scholar 

  • Ruan B, Palioura S, Sabina J, Marvin-Guy L, Kochhar S, Larossa RA, Soll D (2008) Quality control despite mistranslation caused by an ambiguous genetic code. Proc Natl Acad Sci USA 105: 16502–16507

    Article  PubMed  CAS  Google Scholar 

  • Ruusala T, Ehrenberg M, Kurland CG (1982) Is there proofreading during polypeptide synthesis? EMBO J 1: 741–745

    PubMed  CAS  Google Scholar 

  • Sanbonmatsu KY, Joseph S, Tung CS (2005) Simulating movement of tRNA into the ribosome during decoding. Proc Natl Acad Sci USA 102: 15854–15859

    Article  PubMed  CAS  Google Scholar 

  • Schmeing TM, Huang KS, Kitchen DE, Strobel SA, Steitz TA (2005a) Structural insights into the roles of water and the 2′ hydroxyl of the P site tRNA in the peptidyl transferase reaction. Mol Cell 20: 437–448

    Article  PubMed  CAS  Google Scholar 

  • Schmeing TM, Huang KS, Strobel SA, Steitz TA (2005b) An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature 438: 520–524

    Article  PubMed  CAS  Google Scholar 

  • Schmeing TM, Ramakrishnan V (2009) What recent ribosome structures have revealed about the mechanism of translation. Nature 461: 1234–1242

    Article  PubMed  CAS  Google Scholar 

  • Schmeing TM, Seila AC, Hansen JL, Freeborn B, Soukup JK, Scaringe SA, Strobel SA, Moore PB, Steitz TA (2002) A pre-translocational intermediate in protein synthesis observed in crystals of enzymatically active 50S subunits. Nat Struct Biol 9: 225–230

    PubMed  CAS  Google Scholar 

  • Schmeing TM, Voorhees RM, Kelley AC, Gao YG, Murphy FVt, Weir JR, Ramakrishnan V (2009) The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326: 688–694

    Article  PubMed  CAS  Google Scholar 

  • Schuette JC, Murphy FVt, Kelley AC, Weir JR, Giesebrecht J, Connell SR, Loerke J, Mielke T, Zhang W, Penczek PA, Ramakrishnan V, Spahn CM (2009) GTPase activation of elongation factor EF-Tu by the ribosome during decoding. EMBO J 28: 755–765

    Article  PubMed  CAS  Google Scholar 

  • Selmer M, Dunham CM, Murphy FV, Weixlbaumer A, Petry S, Kelley AC, Weir JR, Ramakrishnan V (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313: 1935–1942

    Article  PubMed  CAS  Google Scholar 

  • Sievers A, Beringer M, Rodnina MV, Wolfenden R (2004) The ribosome as an entropy trap. Proc Natl Acad Sci USA 101: 7897–7901

    Article  PubMed  CAS  Google Scholar 

  • Sorensen MA, Pedersen S (1991) Absolute in vivo translation rates of individual codons in Escherichia coli. The two glutamic acid codons GAA and GAG are translated with a threefold difference in rate. J Mol Biol 222: 265–280

    Article  PubMed  CAS  Google Scholar 

  • Stark H, Rodnina MV, Wieden H-J, Zemlin F, Wintermeyer W, van Heel M (2002) Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon recognition complex. Nat Struct Biol 9: 849–854

    PubMed  CAS  Google Scholar 

  • Thompson J, Kim DF, O’Connor M, Lieberman KR, Bayfield MA, Gregory ST, Green R, Noller HF, Dahlberg AE (2001) Analysis of mutations at residues A2451 and G2447 of 23S rRNA in the peptidyltransferase active site of the 50S ribosomal subunit. Proc Natl Acad Sci USA 98: 9002–9007

    Article  PubMed  CAS  Google Scholar 

  • Thompson RC, Dix DB, Gerson RB, Karim AM (1981) Effect of Mg2+ concentration, polyamines, streptomycin, and mutations in ribosomal proteins on the accuracy of the two-step selection of aminoacyl-tRNAs in protein biosynthesis. J Biol Chem 256: 6676–6681

    PubMed  CAS  Google Scholar 

  • Thompson RC, Stone PJ (1977) Proofreading of the codon-anticodon interaction on ribosomes. Proc Natl Acad Sci USA 74: 198–202

    Article  PubMed  CAS  Google Scholar 

  • Trobro S, Ã…qvist J (2005) Mechanism of peptide bond synthesis on the ribosome. Proc Natl Acad Sci U S A 102: 12 395–12400

    Article  CAS  Google Scholar 

  • Trobro S, Ã…qvist J (2006) Analysis of predictions for the catalytic mechanism of ribosomal peptidyl transfer. Biochemistry 45: 7049–7056

    Article  PubMed  CAS  Google Scholar 

  • Valle M, Zavialov A, Li W, Stagg SM, Sengupta J, Nielsen RC, Nissen P, Harvey SC, Ehrenberg M, Frank J (2003) Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nat Struct Biol 10: 899–906

    Article  PubMed  CAS  Google Scholar 

  • Vetter IR, Wittinghofer A (1999) Nucleoside triphosphate-binding proteins: different scaffolds to achieve phosphoryl transfer. Q Rev Biophys 32: 1–56

    Article  PubMed  CAS  Google Scholar 

  • Villa E, Sengupta J, Trabuco LG, LeBarron J, Baxter WT, Shaikh TR, Grassucci RA, Nissen P, Ehrenberg M, Schulten K, Frank J (2009) Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. Proc Natl Acad Sci USA 106: 1063–1068

    Article  PubMed  CAS  Google Scholar 

  • Voorhees RM, Schmeing TM, Kelley AC, Ramakrishnan V (2010) The mechanism for activation of GTP hydrolysis on the ribosome. Science 330: 835–838

    Article  PubMed  CAS  Google Scholar 

  • Voorhees RM, Weixlbaumer A, Loakes D, Kelley AC, Ramakrishnan V (2009) Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Nat Struct Mol Biol 16: 528–533

    Article  PubMed  CAS  Google Scholar 

  • Weinger JS, Parnell KM, Dorner S, Green R, Strobel SA (2004) Substrate-assisted catalysis of peptide bond formation by the ribosome. Nat Struct Mol Biol 11: 1101–1106

    Article  PubMed  CAS  Google Scholar 

  • Wiborg O, Andersen C, Knudsen CR, Clark BF, Nyborg J (1996) Mapping Escherichia coli elongation factor Tu residues involved in binding of aminoacyl-tRNA. J Biol Chem 271: 20406–20411

    Article  PubMed  CAS  Google Scholar 

  • Wohlgemuth I, Beringer M, Rodnina MV (2006) Rapid peptide bond formation on isolated 50S ribosomal subunits. EMBO Rep 7: 669–703

    Article  CAS  Google Scholar 

  • Wohlgemuth I, Brenner S, Beringer M, Rodnina MV (2008) Modulation of the rate of peptidyl transfer on the ribosome by the nature of substrates. J Biol Chem 283: 32229–32235

    Article  PubMed  CAS  Google Scholar 

  • Wohlgemuth I, Pohl C, M. V R (2010) Optimization of speed and accuracy of decoding in translation. EMBO J: in press

    Google Scholar 

  • Wolfenden R (1963) The mechanism of hydrolysis of amino acyl RNA. Biochemistry 338: 1090–1092

    Article  Google Scholar 

  • Youngman EM, Brunelle JL, Kochaniak AB, Green R (2004) The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 117: 589–599

    Article  PubMed  CAS  Google Scholar 

  • Zaher HS, Green R (2009) Quality control by the ribosome following peptide bond formation. Nature 457: 161–166

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Rodnina, M.V. (2011). Mechanisms of decoding and peptide bond formation. In: Rodnina, M.V., Wintermeyer, W., Green, R. (eds) Ribosomes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0215-2_16

Download citation

Publish with us

Policies and ethics