Skip to main content

The mechanism of ribosome recycling in eukaryotes

  • Chapter
Ribosomes

Abstract

Protein synthesis is a cyclical process, consisting of initiation, elongation, termination and ribosome recycling stages. Initiation requires pools of separated small and large ribosomal subunits, and it has been known for about forty years that, after termination, eukaryotic 80S ribosomes dissociate from polysomes into 40S and 60S subunits, which then either participate in the next round of initiation, or enter a reservoir of stable, translationally inactive 80S monosomes (Adamson et al., 1969; Hogan and Korner, 1968b; Kaempfer 1969; Falvey and Staehelin, 1970; Howard et al., 1970; Henshaw et al., 1973). Although 80S monosomes accumulate in response to stresses that inhibit initiation, such as amino acid or glucose starvation, reversal of these conditions allows them to be dissociated and their subunits to re-enter the translation process (Hogan and Korner, 1968 a). In bacteria, recycling of post-termination 70S ribosomal complexes (post-TCs) requires elongation factor EF-G, the dedicated ribosome recycling factor RRF (Hirashima and Kaji, 1973) and initiation factor IF3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson SD, Howard GA, Herbert E (1969) The ribosome cycle in a reconstituted cell-free system from reticulocytes. Cold Spring Harb Symp Quant Biol 34: 547–554

    Article  PubMed  CAS  Google Scholar 

  • Alkalaeva EZ, Pisarev AV, Frolova LY, Kisselev LL, Pestova TV (2006) In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3. Cell 125: 1125–1136

    Article  PubMed  CAS  Google Scholar 

  • Andersen CB, Becker T, Blau M, Anand M, Halic M, Balar B, Mielke T, Boesen T, Pedersen JS, Spahn CM, Kinzy TG, Andersen GR, Beckmann R (2006) Structure of eEF3 and the mechanism of transfer RNA release from the E-site. Nature 443: 663–668

    Article  PubMed  CAS  Google Scholar 

  • Andersen DS, Leevers SJ (2007) The essential Drosophila ATP-binding cassette domain protein, pixie, binds the 40 S ribosome in an ATP-dependent manner and is required for translation initiation. J Biol Chem 282: 14752–14760

    Article  PubMed  CAS  Google Scholar 

  • Atkinson GC, Baldauf SL, Hauryliuk V (2008) Evolution of nonstop, no-go and nonsense-mediated mRNA decay and their termination factor-derived components. BMC Evol Biol 8: 290

    Article  PubMed  CAS  Google Scholar 

  • Barat C, Datta PP, Raj VS, Sharma MR, Kaji H, Kaji A, Agrawal RK (2007) Progression of the ribosome recycling factor through the ribosome dissociates the two ribosomal subunits. Mol Cell 27: 250–261

    Article  PubMed  CAS  Google Scholar 

  • Barthelme D, Scheele U, Dinkelaker S, Janoschka A, Macmillan F, Albers SV, Driessen AJ, Stagni MS, Bill E, Meyer-Klaucke W, Schünemann V, Tampé R (2007) Structural organization of essential iron-sulfur clusters in the evolutionarily highly conserved ATP-binding cassette protein ABCE1. J Biol Chem 282: 14598–14607

    Article  PubMed  CAS  Google Scholar 

  • Bisbal C, Martinand C, Silhol M, Lebleu B, Salehzada T (1995) Cloning and characterization of a RNase L inhibitor. A new component of the interferon-regulated 2–5A pathway. J Biol Chem 270: 13308–13317

    Article  PubMed  CAS  Google Scholar 

  • Ceglarz E, Goumans H, Thomas A, Benne R (1980) Purification and characterization of protein synthesis initiation factor eIF-3from wheat germ. Biochim Biophys Acta 610: 181–188

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri J, Chowdhury D, Maitra U (1999) Distinct functions of eukaryotic translation initiation factors eIF1A and eIF3 in the formation of the 40 S ribosomal preinitiation complex. J Biol Chem 274: 17975–17980

    Article  PubMed  CAS  Google Scholar 

  • Checkley JW, Cooley L, Ravel JM (1981) Characterization of initiation factor eIF-3from wheat germ. J Biol Chem 256: 1582–1586

    PubMed  CAS  Google Scholar 

  • Chen ZQ, Dong J, Ishimura A, Daar I, Hinnebusch AG, Dean M (2006) The essential vertebrate ABCE1 protein interacts with eukaryotic initiation factors. J Biol Chem 281: 7452–7457

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z, Saito K, Pisarev AV, Wada M, Pisareva VP, Pestova TV, Gajda M, Round A, Kong C, Lim M, Nakamura Y, Svergun DI, Ito K, Song H (2009) Structural insights into eRF3 and stop codon recognition by eRF1. Genes Dev 23: 1106–1118

    Article  PubMed  CAS  Google Scholar 

  • Coelho CM, Kolevski B, Bunn C, Walker C, Dahanukar A, Leevers SJ (2005) Growth and cell survival are unevenly impaired in pixie mutant wing discs. Development 132: 5411–5424

    Article  PubMed  CAS  Google Scholar 

  • Dean M, Annilo T (2005) Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu Rev Genomics Hum Genet 6: 123–142

    Article  PubMed  CAS  Google Scholar 

  • Deyo JE, Chiao PJ, Tainsky MA (1998) drp, a novel protein expressed at high cell density but not during growth arrest. DNA Cell Biol 17: 437–447

    Article  PubMed  CAS  Google Scholar 

  • Dong J, Lai R, Nielsen K, Fekete CA, Qiu H, Hinnebusch AG (2004) The essential ATP-binding cassette protein RLI1 functions in translation by promoting preinitiation complex assembly. J Biol Chem 279: 42157–42168

    Article  PubMed  CAS  Google Scholar 

  • Dooher JE, Schneider BL, Reed JC, Lingappa JR (2007) Host ABCE1 is at plasma membrane HIV assembly sites and its dissociation from Gag is linked to subsequent events of virus production. Traffic 8: 195–211

    Article  PubMed  CAS  Google Scholar 

  • Falvey AK, Staehelin T (1970) Structure and function of mammalian ribosomes. II. Exchange of ribosomal subunits at various stages of in vitro polypeptide synthesis. J Mol Biol 53: 21–34

    Article  PubMed  CAS  Google Scholar 

  • Fan-Minogue H, Du M, Pisarev AV, Kallmeyer AK, Salas-Marco J, Keeling KM, Thompson SR, Pestova TV, Bedwell DM (2008) Distinct eRF3 requirements suggest alternate eRF1 conformations mediate peptide release during eukaryotic translation termination. Mol Cell 30: 599–609

    Article  PubMed  CAS  Google Scholar 

  • Fleischer TC, Weaver CM, McAfee KJ, Jennings JL, Link AJ (2006) Systematic identification and functional screens of uncharacterized proteins associated with eukaryotic ribosomal complexes. Genes Dev 20: 1294–1307

    Article  PubMed  CAS  Google Scholar 

  • Fraser CS, Berry KE, Hershey JW, Doudna JA (2007) eIF3j is located in the decoding center of the human 40S ribosomal subunit. Mol Cell 26: 811–819

    Article  PubMed  CAS  Google Scholar 

  • Fraser CS, Lee JY, Mayeur GL, Bushell M, Doudna JA, Hershey JW (2004) The j-subunit of human translation initiation factor eIF3 is required for the stable binding of eIF3 and its sub-complexes to 40 S ribosomal subunits in vitro. J Biol Chem 279: 8946–8956

    Article  PubMed  CAS  Google Scholar 

  • Frolova LY, Simonsen JL, Merkulova TI, Litvinov DY, Martensen PM, Rechinsky VO, Camonis JH, Kisselev LL, Justesen J (1998) Functional expression of eukaryotic polypeptide chain release factors 1 and 3 by means of baculovirus/insect cells and complex formation between the factors. Eur J Biochem 256: 36–44

    Article  PubMed  CAS  Google Scholar 

  • Gao N, Zavialov AV, Li W, Sengupta J, Valle M, Gursky RP, Ehrenberg M, Frank J (2005) Mechanism for the disassembly of the posttermination complex inferred from cryo-EM studies. Mol Cell 18: 663–674

    Article  PubMed  CAS  Google Scholar 

  • Gao N, Zavialov AV, Ehrenberg M, Frank J (2007) Specific interaction between EF-G and RRF and its implication for GTP-dependent ribosome splitting into subunits. J Mol Biol 374: 1345–13458

    Article  PubMed  CAS  Google Scholar 

  • Gartmann M, Blau M, Armache JP, Mielke T, Topf M, Beckmann R (2010) Mechanism of eIF6-mediated inhibition of ribosomal subunit joining. J Biol Chem 285: 14848–14851

    Article  PubMed  CAS  Google Scholar 

  • Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425: 737–741

    Article  PubMed  CAS  Google Scholar 

  • Goldstein ES, Treadway SL, Stephenson AE, Gramstad GD, Keilty A, Kirsch L, Imperial M, Guest S, Hudson SG, LaBell AA, O’Day M, Duncan C, Tallman, M, Cattelino A, Lim J (2001) A genetic analysis of the cytological region 46C-F containing the Drosophila melanogaster homolog of the jun protooncogene. Mol Genet Genomics 266: 695–700

    Article  PubMed  CAS  Google Scholar 

  • Goumans H, Thomas A, Verhoeven A, Voorma HO, Benne R (1980) The role of eIF-4C in protein synthesis initiation complex formation. Biochim Biophys Acta 608: 39–46

    Article  PubMed  CAS  Google Scholar 

  • Grubbs RD (2002) Intracellular magnesium and magnesium buffering. Biometals 15: 251–259

    Article  PubMed  CAS  Google Scholar 

  • Hauryliuk V, Zavialov A, Kisselev L, Ehrenberg M (2006) Class-1 release factor eRF1 promotes GTP binding by class-2 release factor eRF3. Biochimie 88: 747–757

    Article  PubMed  CAS  Google Scholar 

  • Henshaw EC, Guiney DG, Hirsch CA (1973) The ribosome cycle in mammalian protein synthesis. I. The place of monomeric ribosomes and ribosomal subunits in the cycle. J Biol Chem 248: 4367–4376

    PubMed  CAS  Google Scholar 

  • Higgins CF, Linton KJ (2004) The ATP switch model for ABC transporters. Nat Struct Mol Biol 11: 918–926

    Article  PubMed  CAS  Google Scholar 

  • Hirashima A, Kaji A (1973) Role of elongation factor G and a protein factor on the release of ribosomes from messenger ribonucleic acid. J Biol Chem 248: 7580–7587

    PubMed  CAS  Google Scholar 

  • Hogan BL, Korner A (1968a) Ribosomal subunits of Landschütz ascites cells during changes in polysome distribution. Biochim Biophys Acta 169: 129–138

    Article  PubMed  CAS  Google Scholar 

  • Hogan BL, Korner A (1968b) The role of ribosomal subunits and 80-S monomers in polysome formation in an ascites tumour cell. Biochim Biophys Acta 169: 139–149

    Article  PubMed  CAS  Google Scholar 

  • Howard GA, Adamson SD, Herbert E (1970) Subunit recycling during translation in a reticulocyte cell-free system. J Biol Chem 245: 6237–6239

    PubMed  CAS  Google Scholar 

  • Ito K, Ebihara K & Nakamura Y (1998) The stretch of C-terminal acidic amino acids of translational release factor eRF1 is a primary binding site for eRF3 of fission yeast. RNA 4: 958–972

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98: 4569–4574

    Article  PubMed  CAS  Google Scholar 

  • Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11: 113–127

    Article  PubMed  CAS  Google Scholar 

  • Jones RL, Sadnik I, Thompson HA, Moldave K (1980) Studies on native ribosomal subunits from rat liver. Evidence for a low molecular weight ribosome dissociation factor. Arch Biochem Biophys 199: 277–285

    Article  PubMed  CAS  Google Scholar 

  • Kaempfer R (1969) Ribosomal subunit exchange in the cytoplasm of a eukaryote. Nature 222: 950–953

    Article  PubMed  CAS  Google Scholar 

  • Karcher A, Büttner K, Märtens B, Jansen RP, Hopfner KP (2005) X-ray structure of RLI, an essential twin cassette ABC ATPase involved in ribosome biogenesis and HIV capsid assembly. Structure 13: 649–659

    Article  PubMed  CAS  Google Scholar 

  • Karcher A, Schele A, Hopfner KP (2008) X-ray structure of the complete ABC enzyme ABCE1 from Pyrococcus abyssi. J Biol Chem 283: 7962–7971

    Article  PubMed  CAS  Google Scholar 

  • Karimi R, Pavlov MY, Buckingham RH, Ehrenberg M (1999) Novel roles for classical factors at the interface between translation termination and initiation. Mol Cell 3: 601–609

    Article  PubMed  CAS  Google Scholar 

  • Kerr ID (2004) Sequence analysis of twin ATP binding cassette proteins involved in translational control, antibiotic resistance, and ribonuclease L inhibition. Biochem Biophys Res Commun 315: 166–173

    Article  PubMed  CAS  Google Scholar 

  • Khoshnevis S, Gross T, Rotte C, Baierlein C, Ficner R, Krebber H (2010) The iron-sulphur protein RNase L inhibitor functions in translation termination. EMBO Rep 11: 214–219

    Article  PubMed  CAS  Google Scholar 

  • Kispal G, Sipos K, Lange H, Fekete Z, Bedekovics T, Janáky T, Bassler J, Aguilar Netz DJ, Balk J, Rotte C, Lill R (2005) Biogenesis of cytosolic ribosomes requires the essential iron-sulphur protein Rli1p and mitochondria. EMBO J 24: 589–598

    Article  PubMed  CAS  Google Scholar 

  • Kisselev L, Ehrenberg M, Frolova L (2003) Termination of translation: interplay of mRNA, rRNAs and release factors? EMBO J 22: 175–182

    Article  PubMed  CAS  Google Scholar 

  • Kolupaeva VG, Unbehaun A, Lomakin IB, Hellen CU, Pestova TV (2005) Binding of eukaryotic initiation factor 3 to ribosomal 40S subunits and its role in ribosomal dissociation and anti-association. RNA 11: 470–486

    Article  PubMed  CAS  Google Scholar 

  • Kurata S, Nielsen KH, Mitchell SF, Lorsch JR, Kaji A, Kaji H (2010) Ribosome recycling step in yeast cytoplasmic protein synthesis is catalyzed by eEF3 and ATP. Proc Natl Acad Sci USA 107: 10854–10859

    Article  PubMed  CAS  Google Scholar 

  • Le Roy F, Salehzada T, Bisbal C, Dougherty JP, Peltz SW (2005) A newly discovered function for RNase L in regulating translation termination. Nat Struct Mol Biol 12: 505–512

    Article  CAS  Google Scholar 

  • Lingappa JR, Dooher JE, Newman MA, Kiser PK, Klein KC (2006) Basic residues in the nucleocapsid domain of Gag are required for interaction of HIV-1 gag with ABCE1 (HP68), a cellular protein important for HIV-1 capsid assembly. J Biol Chem 281: 3773–3784

    Article  PubMed  CAS  Google Scholar 

  • Lomakin IB, Kolupaeva VG, Marintchev A, Wagner G, Pestova TV (2003) Position of eukaryotic initiation factor eIF1 on the 40S ribosomal subunit determined by directed hydroxyl radical probing. Genes Dev 17: 2786–2797

    Article  PubMed  CAS  Google Scholar 

  • Lomakin IB, Shirokikh NE, Yusupov MM, Hellen CU, Pestova TV (2006) The fidelity of translation initiation: reciprocal activities of eIF1, IF3 and YciH. EMBO J 25: 196–210

    Article  PubMed  CAS  Google Scholar 

  • Lubsen NH, Davies BD (1974) A ribosome dissociation factor on both native subunits in rabbit reticulocytes. Biochim Biophys Acta 335: 196–200

    Article  Google Scholar 

  • Martinand C, Montavon C, Salehzada T, Silhol M, Lebleu B, Bisbal C (1999) RNase L inhibitor is induced during human immunodeficiency virus type 1 infection and down regulates the 2–5A/RNase L pathway in human T cells. J Virol 73: 290–296

    PubMed  CAS  Google Scholar 

  • Merrick WC, Lubsen NH, Anderson WF (1973) A ribosome dissociation factor from rabbit reticulocytes distinct from initiation factor M3. Proc Natl Acad Sci USA 70: 2220–2223

    Article  PubMed  CAS  Google Scholar 

  • Mitkevich VA, Kononenko AV, Petrushanko IY, Yanvarev DV, Makarov AA, Kisselev LL (2006) Termination of translation in eukaryotes is mediated by the quaternary eRF1*eRF3*GTP*Mg2+ complex. The biological roles of eRF3 and prokaryotic RF3 are profoundly distinct. Nucleic Acids Res 34: 3947–3954

    Article  PubMed  CAS  Google Scholar 

  • Mizuno S, Rabinovitz M (1973) Factor-promoted dissociation of free ribosomes in a rabbit reticulocyte lysate system: inhibition and requirement for an energy source. Proc Natl Acad Sci USA 70: 787–791

    Article  PubMed  CAS  Google Scholar 

  • Passmore LA, Schmeing TM, Maag D, Applefield DJ, Acker MG, Algire MA, Lorsch JR, Ramakrishnan V (2007) The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome. Mol Cell 26: 41–50

    Article  PubMed  CAS  Google Scholar 

  • Pavlov MY, Antoun A, Lovmar M, Ehrenberg M (2008) Complementary roles of initiation factor 1 and ribosome recycling factor in 70S ribosome splitting. EMBO J 27: 1706–1717

    Article  PubMed  CAS  Google Scholar 

  • Paytubi S, Wang X, Lam YW, Izquierdo L, Hunter MJ, Jan E, Hundal HS, Proud CG (2009) ABC50 promotes translation initiation in mammalian cells. J Biol Chem 284: 24061–24073

    Article  PubMed  CAS  Google Scholar 

  • Peske F, Rodnina MV, Wintermeyer W (2005) Sequence of steps in ribosome recycling as defined by kinetic analysis. Mol Cell 18: 403–412

    Article  PubMed  CAS  Google Scholar 

  • Pisarev AV, Hellen CU, Pestova TV (2007) Recycling of eukaryotic posttermination ribosomal complexes. Cell 131: 286–299

    Article  PubMed  CAS  Google Scholar 

  • Pisarev AV, Skabkin MA, Pisareva VP, Skabkina OV, Rakotondrafara AM, Hentze MW, Hellen CU, Pestova TV (2010) The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol Cell 37: 196–210

    Article  PubMed  CAS  Google Scholar 

  • Pisareva VP, Pisarev AV, Hellen CU, Rodnina MV, Pestova TV (2006) Kinetic analysis of interaction of eukaryotic release factor 3 with guanine nucleotides. J Biol Chem 281: 40224–40235

    Article  PubMed  CAS  Google Scholar 

  • Prosniak M, Dierov J, Okami K, Tilton B, Jameson B, Sawaya BE, Gartenhaus RB (1998) A novel candidate oncogene, MCT-1, is involved in cell cycle progression. Cancer Res 58: 4233–4237

    PubMed  CAS  Google Scholar 

  • Raychaudhuri P, Stringer EA, Valenzuela DM, Maitra U (1984) Ribosomal subunit antiassociation activity in rabbit reticulocyte lysates. Evidence for a low molecular weight ribosomal subunit antiassociation protein factor (Mr = 25,000). J Biol Chem 259: 11930–11935

    PubMed  CAS  Google Scholar 

  • Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. Nat Rev Mol Cell Biol 10: 218–227

    Article  PubMed  CAS  Google Scholar 

  • Rodnina MV (2010) Protein synthesis meets ABC ATPases: new roles for Rli1/ABCE1. EMBO Rep 11: 143–144

    Article  PubMed  CAS  Google Scholar 

  • Romani A (2007) Regulation of magnesium homeostasis and transport in mammalian cells. Arch Biochem Biophys 458: 90–102

    Article  PubMed  CAS  Google Scholar 

  • Rorbach J, Richter R, Wessels HJ, Wydro M, Pekalski M, Farhoud M, Kühl I, Gaisne M, Bonnefoy N, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM (2008) The human mitochondrial ribosome recycling factor is essential for cell viability. Nucleic Acids Res 36: 5787–5799

    Article  PubMed  CAS  Google Scholar 

  • Russell DW, Spremulli LL (1979) Purification and characterization of a ribosome dissociation factor (eukaryotic initiation factor 6) from wheat germ. J Biol Chem 254: 8796–8800

    PubMed  CAS  Google Scholar 

  • Salas-Marco J, Bedwell DM (2004) GTP hydrolysis by eRF3facilitates stop codon decoding during eukaryotic translation termination. Mol Cell Biol 24: 7769–7778

    Article  PubMed  CAS  Google Scholar 

  • Savelsbergh A, Rodnina MV, Wintermeyer W (2009) Distinct functions of elongation factor G in ribosome recycling and translocation. RNA 15: 772–780

    Article  PubMed  CAS  Google Scholar 

  • Shenvi CL, Dong KC, Friedman EM, Hanson JA, Cate JH (2005) Accessibility of 18S rRNA in human 40S subunits and 80S ribosomes at physiological magnesium ion concentrations — implications for the study of ribosome dynamics. RNA 11: 1898–1908

    Article  PubMed  CAS  Google Scholar 

  • Si K, Maitra U (1999) The Saccharomyces cerevisiae homologue of mammalian translation initiation factor 6 does not function as a translation initiation factor. Mol Cell Biol 19: 1416–1426

    PubMed  CAS  Google Scholar 

  • Silverman RH (2007) Viral encounters with 2′,5′-oligoadenylate synthetase and RNase L during the interferon antiviral response. J Virol 81: 12720–12729

    Article  PubMed  CAS  Google Scholar 

  • Siridechadilok B, Fraser CS, Hall RJ, Doudna JA, Nogales E (2005) Structural roles for human translation factor eIF3 in initiation of protein synthesis. Science 310: 1513–1515

    Article  PubMed  CAS  Google Scholar 

  • Skabkin MA, Skabkina OV, Dhote V, Komar AA, Hellen CUT, Pestova TV (2010) Activities of Ligatin and MCT-1/DENR in eukaryotic translation initiation and ribosomal recycling. Genes Dev 24: 1787–1801

    Article  PubMed  CAS  Google Scholar 

  • Smith PC, Karpowich N, Millen L, Moody JE, Rosen J, Thomas PJ, Hunt JF (2002) ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol Cell 10: 139–149

    Article  PubMed  CAS  Google Scholar 

  • Stansfield I, Kushnirov VV, Jones KM, Tuite MF (1997) A conditional-lethal translation termination defect in a sup45 mutant of the yeast Saccharomyces cerevisiae. Eur J Biochem 245: 557–563

    Article  PubMed  CAS  Google Scholar 

  • Thompson HA, Sadnik I, Scheinbuks J, Moldave K (1977) Studies on native ribosomal subunits from rat liver. Purification and characterization of a ribosome dissociation factor. Biochemistry 16: 2221–2230

    Article  PubMed  CAS  Google Scholar 

  • Trachsel H, Staehelin T (1979) Initiation of mammalian protein synthesis. The multiple functions of the initiation factor eIF-3. Biochim Biophys Acta 565: 305–314

    Article  PubMed  CAS  Google Scholar 

  • Unbehaun A, Borukhov SI, Hellen CU, Pestova TV (2004) Release of initiation factors from 48S complexes during ribosomal subunit joining and the link between establishment of codon-anticodon base-pairing and hydrolysis of eIF2-bound GTP. Genes Dev 18: 3078–3093

    Article  PubMed  CAS  Google Scholar 

  • Valásek L, Hasek J, Nielsen KH, Hinnebusch AG (2001) Dual function of eIF3j/Hcr1p in processing 20 S pre-rRNA and translation initiation. J Biol Chem 276: 43351–43360

    Article  PubMed  CAS  Google Scholar 

  • Valásek L, Hasek J, Trachsel H, Imre EM, Ruis H (1999) The Saccharomyces cerevisiae HCR1 gene encoding a homologue of the p35 subunit of human translation initiation factor 3 (eIF3) is a high copy suppressor of a temperature-sensitive mutation in the Rpg1p subunit of yeast eIF3. J Biol Chem 274: 27567–27572

    Article  PubMed  Google Scholar 

  • Valenzuela DM, Chaudhuri A, Maitra U (1982) Eukaryotic ribosomal subunit anti-association activity of calf liver is contained in a single polypeptide chain protein of Mr = 25,500 (eukaryotic initiation factor 6). J Biol Chem 257: 7712–7719

    PubMed  CAS  Google Scholar 

  • Vazquez de Aldana CR, Marton MJ, Hinnebusch AG (1995) GCN20, a novel ATP binding cassette protein, and GCN1 reside in a complex that mediates activation of the eIF-2 alpha kinase GCN2 in amino acid-starved cells. EMBO J 14: 3184–3199

    Google Scholar 

  • Yarunin A, Panse VG, Petfalski E, Dez C, Tollervey D, Hurt EC (2005) Functional link between ribosome formation and biogenesis of iron-sulfur proteins. EMBO J 24: 580–588

    Article  PubMed  CAS  Google Scholar 

  • Youngman EM, McDonald ME, Green R (2008) Peptide release on the ribosome: mechanism and implications for translational control. Annu Rev Microbiol 62: 353–373

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Marintchev A, Kolupaeva VG, Unbehaun A, Veryasova T, Lai SC, Hong P, Wagner G, Hellen CU, Pestova TV (2009) Position of eukaryotic translation initiation factor eIF1A on the 40S ribosomal subunit mapped by directed hydroxyl radical probing. Nucleic Acids Res 37: 5167–5182

    Article  PubMed  CAS  Google Scholar 

  • Zavialov AV, Buckingham RH, Ehrenberg M (2001) A posttermination ribosomal complex is the guanine nucleotide exchange factor for peptide release factor RF3. Cell 107: 115–124

    Article  PubMed  CAS  Google Scholar 

  • Zavialov AV, Hauryliuk VV, Ehrenberg M (2005) Splitting of the posttermination ribosome into subunits by the concerted action of RRF and EF-G. Mol Cell 18: 675–686

    Article  PubMed  CAS  Google Scholar 

  • Zavialov AV, Mora L, Buckingham RH, Ehrenberg M (2002) Release of peptide promoted by the GGQ motif of class 1 release factors regulates the GTPase activity of RF3. MolCell 10: 789–798

    CAS  Google Scholar 

  • Zimmerman C, Klein KC, Kiser PK, Singh AR, Firestein BL, Riba SC, Lingappa JR (2002) Identification of a host protein essential for assembly of immature HIV-1 capsids. Nature 415: 88–92

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Pisarev, A.V., Skabkin, M.A., Pisareva, V.P., Skabkina, O.V., Hellen, C.U.T., Pestova, T.V. (2011). The mechanism of ribosome recycling in eukaryotes. In: Rodnina, M.V., Wintermeyer, W., Green, R. (eds) Ribosomes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0215-2_14

Download citation

Publish with us

Policies and ethics