Skip to main content

Recruiting knotty partners: The roles of translation initiation factors in mRNA recruitment to the eukaryotic ribosome

  • Chapter
Ribosomes

Abstract

Eukaryotic translation initiation begins with the binding of a ternary complex (TC) composed of eukaryotic initiation factor (eIF) 2, methionyl initiator tRNA (Met-tRNAi) and GTP to the 40S ribosomal subunit to form the 43S pre-initiation complex (PIC) in a process that is promoted by eIFs 1, 1A, and 3 (Figure 1; for reviews of the entire pathway of translation initiation see (Jackson et al., 2010; Lorsch and Dever, 2010)). This complex is then capable of binding the mRNA near the 5′ end and moving in a 5′-to-3′ direction in search of the start codon. As the start codon in eukaryotic mRNA is usually the first AUG codon, it is necessary for the ribosome to be recruited to the very 5′ end of the mRNA. Were it to bind 3′ to the start codon, it would scan to the next AUG and make an aberrant polypeptide. This localization is achieved by the presence of a 7-methylguanosine cap on the 5′ end of the mRNA that, through a number of protein-protein interactions, brings the ribosome to the very beginning of the mRNA. Protein factors are also thought to be responsible for removing secondary structure and RNA binding proteins from the RNA to create a single-stranded region for the ribosome to bind. Interaction between factors at the 5′ and 3′ ends of the message functionally circularizes the mRNA and allows communication between the ends. After initial recruitment of the PIC, many of these factors are also thought to be involved in the process of scanning, removing structure and proteins so that the ribosome can move forward in search of the start codon, and potentially also pushing the PIC along the mRNA or increasing the directionality of this movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramson RD, Browning KS, Dever TE, Lawson TG, Thach RE, Ravel JM, Merrick WC (1988) Initiation factors that bind mRNA. A comparison of mammalian factors with wheat germ factors. J Biol Chem 263: 5462–5467

    PubMed  CAS  Google Scholar 

  • Abramson RD, Dever TE, Lawson TG, Ray BK, Thach RE, Merrick WC (1987) The ATP-dependent interaction of eukaryotic initiation factors with mRNA. J Biol Chem 262: 3826–3832

    PubMed  CAS  Google Scholar 

  • Algire MA, Maag D, Savio P, Acker MG, Tarun SZ, Sachs AB, Asano K, Nielsen KH, Olsen DS, Phan L, Hinnebusch AG, Lorsch JR (2002) Development and characterization of a reconstituted yeast translation initiation system. RNA 8: 382–397

    PubMed  CAS  Google Scholar 

  • Altmann M, Muller PP, Pelletier J, Sonenberg N, Trachsel H (1989) A mammalian translation initiation factor can substitute for its yeast homologue in vivo. J Biol Chem 264: 12 145–12 147

    CAS  Google Scholar 

  • Altmann M, Muller PP, Wittmer B, Ruchti F, Lanker S, Trachsel H (1993) A Saccharomyces cerevisiae Homologue of Mammalian Translation Initiation Factor 4B Contributes to RNA Helicase Activity. EMBO J 12: 3997–4003

    PubMed  CAS  Google Scholar 

  • Altmann M, Wittmer B, Methot N, Sonenberg N, Trachsel H (1995) The Saccharomyces cerevisiae translation initiation factor Tif3 and its mammalian homologue, eIF-4B, have RNA annealing activity. EMBO J 14: 3820–3827

    PubMed  CAS  Google Scholar 

  • Amrani N, Ganesan R, Kervestin S, Mangus DA, Ghosh S, Jacobson A (2004) A fau× 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 432: 112–118

    PubMed  CAS  Google Scholar 

  • Anderson JT, Wilson SM, Datar KV, Swanson MS (1993) NAB2: a yeast nuclear polyadenylated RNA-binding protein essential for cell viability. Mol Cell Biol 13: 2730–2741

    PubMed  CAS  Google Scholar 

  • Asano K, Clayton J, Shalev A, Hinnebusch AG (2000) A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo. Genes Dev 14: 2534–2546

    PubMed  CAS  Google Scholar 

  • Asano K, Kinzy TG, Merrick WC, Hershey JW (1997) Conservation and diversity of eukaryotic translation initiation factor eIF3. J Biol Chem 272: 1101–1109

    PubMed  CAS  Google Scholar 

  • Asano K, Shalev A, Phan L, Nielsen K, Clayton J, Valassek L, Donahue TF, Hinnebusch AG (2001) Multiple roles for the C-terminal domain of eIF5 in translation initiation complex assembly and GTPase activation. EMBO J 20: 2326–2337

    PubMed  CAS  Google Scholar 

  • Baim SB, Sherman F (1988) mRNA structures influencing translation in the yeast Saccharomyces cerevisiae. Mol Cell Biol 8: 1591–1601

    PubMed  CAS  Google Scholar 

  • Berset C, Zurbriggen A, Djafarzadeh S, Altmann M, Trachsel H (2003) RNA-binding activity of translation initiation factor eIF4G1from Saccharomyces cerevisiae. RNA 9: 871–880

    PubMed  CAS  Google Scholar 

  • Bettany AJ, Moore PA, Cafferkey R, Bell LD, Goodey AR, Carter BL, Brown AJ (1989) 5′-secondary structure formation, in contrast to a short string of non-preferred codons, inhibits the translation of the pyruvate kinase mRNA in yeast. Yeast 5: 187–198

    PubMed  CAS  Google Scholar 

  • Bi X, Ren J, Goss DJ (2000) Wheat germ translation initiation factor eIF4B affects eIF4A and eIFiso4F helicase activity by increasing the ATP binding affinity of eIF4A. Biochemistry 39: 5758–5765

    PubMed  CAS  Google Scholar 

  • Block KL, Vornlocher HP, Hershey JW (1998) Characterization of cDNAs encoding the p44 and p35 subunits of human translation initiation factor eIF3. J Biol Chem 273: 31901–31908

    PubMed  CAS  Google Scholar 

  • Blum S, Schmid SR, Pause A, Buser P, Linder P, Sonenberg N, Trachsel H (1992) ATP hydrolysis by initiation factor 4A is required for translation initiation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 89: 7664–7668

    PubMed  CAS  Google Scholar 

  • Browning KS, Fletcher L, Lax SR, Ravel JM (1989) Evidence that the 59-kDa protein synthesis initiation factor from wheat germ is functionally similar to the 80-kDa initiation factor 4B from mammalian cells. J Biol Chem 264: 8491–8494

    PubMed  CAS  Google Scholar 

  • Caruthers JM, Johnson ER, McKay DB (2000) Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase. Proc Natl Acad Sci USA 97: 13 080–13 085

    CAS  Google Scholar 

  • Chaudhuri J, Chowdhury D, Maitra U (1999) Distinct functions of eukaryotic translation initiation factors eIF1A and eIF3 in the formation of the 40S ribosomal preinitiation complex. J Biol Chem 273: 17 975–17 980

    Google Scholar 

  • Chen YH, Su LH, Sun CH (2008) Incomplete nonsense-mediated mRNA decay in Giardia lamblia. Int J Parasitol 38: 1305–1317

    PubMed  CAS  Google Scholar 

  • Chuang RY, Weaver PL, Liu Z, Chang TH (1997) Requirement of the DEAD-Box protein ded1 p for messenger RNA translation. Science 275: 1468–1471

    PubMed  CAS  Google Scholar 

  • Clarkson BK, Gilbert WV, Doudna JA. Functional overlap between eIF4G isoforms in Saccharomyces cerevisiae. PLoS One 5: e9114

    Google Scholar 

  • Clarkson BK, Gilbert WV, Doudna JA (2010) Functional overlap between eIF4G isoforms in Saccharomyces cerevisiae. PLoS One 5: e9114

    PubMed  Google Scholar 

  • Coppolecchia R, Buser P, Stotz A, Linder P (1993) A new yeast translation initiation factor suppresses a mutation in the eIF-4A RNA helicase. EMBO J 12: 4005–4011

    PubMed  CAS  Google Scholar 

  • Danaie P, Wittmer B, Altmann M, Trachsel H (1995) Isolation of a protein complex containing translation initiation factor Prt1 from Saccharomyces cerevisiae. J Biol Chem 270: 4288–4292

    PubMed  CAS  Google Scholar 

  • Danckwardt S, Hentze MW, Kulozik AE (2008) 3′ end mRNA processing: molecular mechanisms and implications for health and disease. EMBO J 27: 482–498

    PubMed  CAS  Google Scholar 

  • Del Campo M, Mohr S, Jiang Y, Jia H, Jankowsky E, Lambowitz AM (2009) Unwinding by local strand separation is critical for the function of DEAD-box proteins as RNA chaperones. J Mol Biol 389: 674–693

    Google Scholar 

  • Deo RC, Bonanno JB, Sonenberg N, Burley SK (1999) Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 98: 835–845

    PubMed  CAS  Google Scholar 

  • Dmitriev SE, Pisarev AV, Rubtsova MP, Dunaevsky YE, Shatsky IN (2003) Conversion of 48S translation preinitiation complexes into 80S initiation complexes as revealed by toeprinting. FEBS Lett 533: 99–104

    PubMed  CAS  Google Scholar 

  • Dominguez D, Altmann M, Benz J, Baumann U, Trachsel H (1999) Interaction of translation initiation factor eIF4G with eIF4A in the yeast Saccharomyces cerevisiae. J Biol Chem 274: 26 720–26 726

    CAS  Google Scholar 

  • Dominguez D, Kislig E, Altmann M, Trachsel H (2001) Structural and functional similarities between the central eukaryotic initiation factor (eIF)4A-binding domain of mammalian eIF4G and the eIF4A-binding domain of yeast eIF4G. Biochem J 355: 223–230

    PubMed  CAS  Google Scholar 

  • Dunn EF, Hammell CM, Hodge CA, Cole CN (2005) Yeast poly(A)-binding protein, Pab1, and PAN, a poly(A) nuclease complex recruited by Pab1, connect mRNA biogenesis to export. Genes Dev 19: 90–103

    PubMed  CAS  Google Scholar 

  • Fleming K, Ghuman J, Yuan X, Simpson P, Szendroi A, Matthews S, Curry S (2003) Solution structure and RNA interactions of the RNA recognition motif from eukaryotic translation initiation factor 4B. Biochemistry 42: 8966–8975

    PubMed  CAS  Google Scholar 

  • Fraser CS, Berry KE, Hershey JW, Doudna JA (2007) eIF3j is located in the decoding center of the human 40S ribosomal subunit. Mol Cell 26: 811–819

    PubMed  CAS  Google Scholar 

  • Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425: 737–741

    PubMed  CAS  Google Scholar 

  • Gorbalenya AE, Koonin EV (1993) Helicases — Amino-Acid-Sequence Comparisons and Structure-Function-Relationships. Current Opinion in Structural Biology 3: 419–429

    CAS  Google Scholar 

  • Goss DJ, Carberry SE, Dever TE, Merrick WC, Rhoads RE (1990) Fluorescence study of the binding of m7GpppG and rabbit globin mRNA to protein synthesis initiation factors 4A, 4E, and 4F. Biochemistry 29: 5008–5012

    PubMed  CAS  Google Scholar 

  • Goyer C, Altmann M, Lee HS, Blanc A, Deshmukh M, Woolford JL, Trachsel H, Sonenberg N (1993) TIF4631 and TIF4632: Two Yeast Genes Encoding the High-Molecular-Weight Subunits of the Cap-Binding Protein Complex (Eukaryotic Initiation Factor 4F) Contain an RNA Recognition Motif-Like Sequence and Carry Out an Essential Function. Mol Cell Biol 13: 4860–4874

    PubMed  CAS  Google Scholar 

  • Grifo JA, Abramson RD, Satler CA, Merrick WC (1984) RNA-stimulated ATPase activity of eukaryotic initiation factors. J Biol Chem 259: 8648–8654

    PubMed  CAS  Google Scholar 

  • Grifo JA, Tahara SM, Leis JP, Morgan MA, Shatkin AJ, Merrick WC (1982) Characterization of eukaryotic initiation factor 4A, a protein involved in ATP-dependent binding of globin mRNA. J Biol Chem 257: 5246–5252

    PubMed  CAS  Google Scholar 

  • Groft CM, Burley SK (2002) Recognition of eIF4G by rotavirus NSP3 reveals a basis for mRNA circularization. Mol Cell 9: 1273–1283

    PubMed  CAS  Google Scholar 

  • Gross JD, Moerke NJ, von der Haar T, Lugovskoy AA, Sachs AB, McCarthy JE, Wagner G (2003) Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell 115: 739–750

    PubMed  CAS  Google Scholar 

  • Haghighat A, Sonenberg N (1997) eIF4G dramatically enhances the binding of eIF4E to the mRNA 5′-cap structure. J Biol Chem 272: 21677–21680

    PubMed  CAS  Google Scholar 

  • Hanachi P, Hershey JW, Vornlocher HP (1999) Characterization of the p33 subunit of eukaryotic translation initi-ation factor-3from Saccharomyces cerevisiae. J Biol Chem 274: 8546–8553

    PubMed  CAS  Google Scholar 

  • He H, von der Haar T, Singh CR, Ii M, Li B, Hinnebusch AG, McCarthy JE, Asano K (2003) The yeast eukaryotic initiation factor 4G (eIF4G) HEAT domain interacts with eIF1 and eIF5 and is involved in stringent AUG selection. Mol Cell Biol 23: 5431–5445

    PubMed  CAS  Google Scholar 

  • Hershey PE, McWhirter SM, Gross JD, Wagner G, Alber T, Sachs AB (1999) The Cap-binding protein eIF4E promotes folding of a functional domain of yeast translation initiation factor eIF4G1. J Biol Chem 274: 21 297–21 304

    CAS  Google Scholar 

  • Hinnebusch AG (2006) eIF3: a versatile scaffold for translation initiation complexes. Trends Biochem Sci 31: 553–562

    PubMed  CAS  Google Scholar 

  • Hinton TM, Coldwell MJ, Carpenter GA, Morley SJ, Pain VM (2007) Functional analysis of individual binding activities of the scaffold protein eIF4G. J Biol Chem 282: 1695–1708

    PubMed  CAS  Google Scholar 

  • Imataka H, Sonenberg N (1997) Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A. Mol Cell Biol 17: 6940–6947

    PubMed  CAS  Google Scholar 

  • Iost I, Dreyfus M, Linder P (1999) Ded1p, a DEAD-box protein required for translation initiation in Saccharomyces cerevisiae, is an RNA helicase. J Biol Chem 274: 17 677–17 683

    CAS  Google Scholar 

  • Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11: 113–127

    PubMed  CAS  Google Scholar 

  • Jivotovskaya AV, Valasek L, Hinnebusch AG, Nielsen KH (2006) Eukaryotic translation initiation factor 3 (eIF3) and eIF2 can promote mRNA binding to 40S subunits independently of eIF4G in yeast. Mol Cell Biol 26: 1355–1372

    PubMed  CAS  Google Scholar 

  • Kahvejian A, Svitkin YV, Sukarieh R, M’Boutchou MN, Sonenberg N (2005) Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev 19: 104–113

    PubMed  CAS  Google Scholar 

  • Kapp LD, Lorsch JR (2004) The molecular mechanics of eukaryotic translation. Annu Rev Biochem 73: 657–704

    PubMed  CAS  Google Scholar 

  • Kessler SH, Sachs AB (1998) RNA recognition motif 2 of yeast Pab1p is required for its functional interaction with eukaryotic translation initiation factor 4G. Mol Cell Biol 18: 51–57

    PubMed  CAS  Google Scholar 

  • Kolupaeva VG, Unbehaun A, Lomakin IB, Hellen CU, Pestova TV (2005) Binding of eukaryotic initiation factor 3 to ribosomal 40S subunits and its role in ribosomal dissociation and anti-association. RNA 11: 470–486

    PubMed  CAS  Google Scholar 

  • Korneeva NL, First EA, Benoit CA, Rhoads RE (2005) Interaction between the NH2-terminal domain of eIF4A and the central domain of eIF4G modulates RNA-stimulated ATPase activity. J Biol Chem 280: 1872–1881

    PubMed  CAS  Google Scholar 

  • Korneeva NL, Lamphear BJ, Hennigan FL, Rhoads RE (2000) Mutually cooperative binding of eukaryotic translation initiation factor (eIF) 3 and eIF4A to human eIF4G-1. J Biol Chem 275: 41369–41376

    PubMed  CAS  Google Scholar 

  • Kozak M (1986) Influences of mRNA Secondary Structure on Initiation by Eukaryotic Ribosomes. Proc Natl Acad Sci USA 83: 2850–2854

    PubMed  CAS  Google Scholar 

  • Kozak M (1989) Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Mol Cell Biol 9: 5134–5142

    PubMed  CAS  Google Scholar 

  • Lamphear BJ, Kirchweger R, Skern T, Rhoads RE (1995) Mapping of Functional Domains in Eukaryotic Protein Synthesis Initiation Factor 4G (eIF4G) with Picornaviral Proteases. J Biol Chem 270: 21 975–21 983

    CAS  Google Scholar 

  • Lawson TG, Lee KA, Maimone MM, Abramson RD, Dever TE, Merrick WC, Thach RE (1989) Dissociation of double-stranded polynucleotide helical structures by eukaryotic initiation factors, as revealed by a novel assay. Biochemistry 28: 4729–4734

    PubMed  CAS  Google Scholar 

  • Lawson TG, Ray BK, Dodds JT, Grifo JA, Abramson RD, Merrick WC, Betsch DF, Weith HL, Thach RE (1986) Influence of 5′ proximal secondary structure on the translational efficiency of eukaryotic mRNAs and on their interaction with initiation factors. J Biol Chem 261: 13 979–13 989

    CAS  Google Scholar 

  • Le H, Tanguay RL, Balasta ML, Wei CC, Browning KS, Metz AM, Goss DJ, Gallie DR (1997) Translation initiation factors eIF-iso4G and eIF-4B interact with the poly(A)-binding protein and increase its RNA binding activity. J Biol Chem 272: 16247–16255

    PubMed  CAS  Google Scholar 

  • LeFebvre AK, Korneeva NL, Trutschl M, Cvek U, Duzan RD, Bradley CA, Hershey JW, Rhoads RE (2006) Translation initiation factor eIF4G-1 binds to eIF3 through the eIF3e subunit. J Biol Chem 281: 22 917–22 932

    CAS  Google Scholar 

  • Lindqvist L, Imataka H, Pelletier J (2008) Cap-dependent eukaryotic initiation factor-mRNA interactions probed by cross-linking. RNA 14: 960–969

    PubMed  CAS  Google Scholar 

  • Lorsch JR, Dever TE (2010) Molecular view of 43 S complex formation and start site selection in eukaryotic translation initiation. J Biol Chem 285: 21 203–21 207

    CAS  Google Scholar 

  • Lorsch JR, Herschlag D (1998a) The DEAD Box Protein eIF4A. 1. A Minimal Kinetic and Thermodynamic Framework Reveals Coupled Binding of RNA and Nucleotide. Biochemistry 37: 2180–2193

    PubMed  CAS  Google Scholar 

  • Lorsch JR, Herschlag D (1998b) The DEAD Box Protein eIF4A. 2. A Cycle of Nucleotide and RNA-dependent Conformational Changes. Biochemistry 37: 2194–2206

    PubMed  CAS  Google Scholar 

  • Maag D, Fekete CA, Gryczynski Z, Lorsch JR (2005) A conformational change in the eukaryotic translation preinitiation complex and release of eIF1 signal recognition of the start codon. Mol Cell 17: 265–275

    PubMed  CAS  Google Scholar 

  • Mader S, Lee H, Pause A, Sonenberg N (1995) The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol Cell Biol 15: 4990–4997

    PubMed  CAS  Google Scholar 

  • Majumdar R, Bandyopadhyay A, Maitra U (2003) Mammalian translation initiation factor eIF1functions with eIF1A and eIF3 in the formation of a stable 40 S preinitiation complex. J Biol Chem 278: 6580–6587

    PubMed  CAS  Google Scholar 

  • Mangus DA, Amrani N, Jacobson A (1998) Pbp 1 p, a factor interacting with Saccharomyces cerevisiae poly(A)-binding protein, regulates polyadenylation. Mol Cell Biol 18: 7383–7396

    PubMed  CAS  Google Scholar 

  • Mangus DA, Evans MC, Jacobson A (2003) Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol 4: 223

    PubMed  Google Scholar 

  • Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK (1997) Cocrystal structure of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 89: 951–961

    PubMed  CAS  Google Scholar 

  • Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK (1999) Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol Cell 3: 707–716

    PubMed  CAS  Google Scholar 

  • Marintchev A, Edmonds KA, Marintcheva B, Hendrickson E, Oberer M, Suzuki C, Herdy B, Sonenberg N, Wagner G (2009) Topology and regulation of the human eIF4A/4G/4H helicase complex in translation initiation. Cell 136: 447–460

    PubMed  CAS  Google Scholar 

  • Marintchev A, Wagner G (2005) eIF4G and CBP80 share a common origin and similar domain organization: implications for the structure and function of eIF4G. Biochemistry 44: 12 265–12 272

    CAS  Google Scholar 

  • Maris C, Dominguez C, Allain FH (2005) The RNA recognition motif, a plastic RNA-binding platform to regulate post-tran-scriptional gene expression. FEBS J 272: 2118–2131

    PubMed  CAS  Google Scholar 

  • Marsden S, Nardelli M, Linder P, McCarthy JE (2006) Unwinding single RNA molecules using helicases involved in eukaryotic translation initiation. J Mol Biol 361: 327–335

    PubMed  CAS  Google Scholar 

  • Matsuo H, McGuire AM, Fletcher CM, Gingras AC, Sonenberg N, Wagner G (1997) Structure of translation factor eIF4E bound to m7GDP and interaction with 4E-binding protein. Nat Struct Biol 4: 717–724

    PubMed  CAS  Google Scholar 

  • Mayberry LK, Allen ML, Dennis MD, Browning KS (2009) Evidence for variation in the optimal translation initiation complex: plant eIF4B, eIF4F, and eIF(iso)4F differentially promote translation of mRNAs. Plant Physiol 150: 1844–1854

    PubMed  CAS  Google Scholar 

  • Methot N, Pause A, Hershey JW, Sonenberg N (1994) The translation initiation factor eIF-4B contains an RNA-binding region that is distinct and independent from its ribonucleoprotein consensus sequence. Mol Cell Biol 14: 2307–2316

    PubMed  CAS  Google Scholar 

  • Methot N, Pickett G, Keene JD, Sonenberg N (1996a) In vitro RNA selection identifies RNA ligands that specifically bind to eukaryotic translation initiation factor 4B: the role of the RNA remotif. RNA 2: 38–50

    PubMed  CAS  Google Scholar 

  • Methot N, Song MS, Sonenberg N (1996b) A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3. Mol Cell Biol 16: 5328–5334

    PubMed  CAS  Google Scholar 

  • Metz AM, Wong KC, Malmstrom SA, Browning KS (1999) Eukaryotic initiation factor 4B from wheat and Arabidopsis thaliana is a member of a multigene family. Biochem Biophys Res Commun 266: 314–321

    PubMed  CAS  Google Scholar 

  • Michon T, Estevez Y, Walter J, German-Retana S, Le Gall O (2006) The potyviral virus genome-linked protein VPg forms a ternary complex with the eukaryotic initiation factors eIF4E and eIF4G and reduces eIF4E affinity for a mRNA cap analogue. FEBS J 273: 1312–1322

    PubMed  CAS  Google Scholar 

  • Milburn SC, Hershey JW, Davies MV, Kelleher K, Kaufman RJ (1990) Cloning and expression of eukaryotic initiation factor 4B cDNA: sequence determination identifies a common RNA recognition motif. EMBO J 9: 2783–2790

    PubMed  CAS  Google Scholar 

  • Morino S, Imataka H, Svitkin YV, Pestova TV, Sonenberg N (2000) Eukaryotic translation initiation factor 4E (eIF4E) binding site and the middle one-third of eIF4GI constitute the core domain for cap-dependent translation, and the C-terminal one-third functions as a modulatory region. Mol Cell Biol 20: 468–477

    PubMed  CAS  Google Scholar 

  • Naranda T, Strong WB, Menaya J, Fabbri BJ, Hershey JW (1994) Two structural domains of initiation factor eIF-4B are involved in binding to RNA. J Biol Chem 269: 14 465–14 472

    CAS  Google Scholar 

  • Niederberger N, Trachsel H, Altmann M (1998) The RNA recognition motif of yeast translation initiation factor Tif3/eIF4B is required but not sufficient for RNA strand-exchange and translational activity. RNA 4: 1259–1267

    PubMed  CAS  Google Scholar 

  • Niedzwiecka A, Marcotrigiano J, Stepinski J, Jankowska-Anyszka M, Wyslouch-Cieszynska A, Dadlez M, Gingras AC, Mak P, Darzynkiewicz E, Sonenberg N, Burley SK, Stolarski R (2002) Biophysical studies of eIF4E cap-binding protein: recognition of mRNA 5′ cap structure and synthetic fragments of eIF4G and 4E-BP1 proteins. J Mol Biol 319: 615–635

    PubMed  CAS  Google Scholar 

  • Nielsen KH, Valasek L, Sykes C, Jivotovskaya A, Hinnebusch AG (2006) Interaction of the RNP1 motif in PRT1 with HCR1 promotes 40S binding of eukaryotic initiation factor 3 in yeast. Mol Cell Biol 26: 2984–2998

    PubMed  CAS  Google Scholar 

  • Nielsen PJ, McMaster GK, Trachsel H (1985) Cloning of eukaryotic protein synthesis initiation factor genes: isolation and characterization of cDNA clones encoding factor eIF-4A. Nucleic Acids Res 13: 6867–6880

    PubMed  CAS  Google Scholar 

  • Nielsen PJ, Trachsel H (1988) The mouse protein synthesis initiation factor 4A gene family includes two related functional genes which are differentially expressed. EMBO J 7: 2097–2105

    PubMed  CAS  Google Scholar 

  • Nygard O, Westermann P (1982) Specific interaction of one subunit of eukaryotic initiation factor eIF-3 with 18S ribosomal RNA within the binary complex, eIF-3 small ribosomal subunit, as shown by cross-linking experiments. Nucleic Acids Res 10: 1327–1334

    PubMed  CAS  Google Scholar 

  • Oberer M, Marintchev A, Wagner G (2005) Structural basis for the enhancement of eIF4A helicase activity by eIF4G. Genes Dev 19: 2212–2223

    PubMed  CAS  Google Scholar 

  • Otero LJ, Ashe MP, Sachs AB (1999) The yeast poly(A)-binding protein Pab1p stimulates in vitro poly(A)-dependent and cap-dependent translation by distinct mechanisms. EMBO J 18: 3153–3163

    PubMed  CAS  Google Scholar 

  • Pause A, Methot N, Svitkin Y, Merrick WC, Sonenberg N (1994) Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation. EMBO J 13: 1205–1215

    PubMed  CAS  Google Scholar 

  • Peck ML, Herschlag D (1999) Effects of oligonucleotide length and atomic composition on stimulation of the ATPase activity of translation initiation factor elF4A. RNA 5: 1210–1221

    PubMed  CAS  Google Scholar 

  • Pelletier J, Sonenberg N (1985) Insertion Mutagenesis to Increase Secondary Structure within the 5′ Noncoding Region of a Eukaryotic mRNA Reduces Translational Efficiency. Cell 40: 515–526

    PubMed  CAS  Google Scholar 

  • Pestova TV, Kolupaeva VG (2002) The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev 16: 2906–2922

    PubMed  CAS  Google Scholar 

  • Phan L, Schoenfeld LW, Valasek L, Nielsen KH, Hinnebusch AG (2001) A subcomplex of three eIF3 subunits binds eIF1 and eIF5 and stimulates ribosome binding of mRNA and tRNA(i) (Met) EMBO J 20: 2954–2965

    PubMed  CAS  Google Scholar 

  • Phan L, Zhang X, Asano K, Anderson J, Vornlocher HP, Greenberg JR, Qin J, Hinnebusch AG (1998) Identification of a translation initiation factor 3 (eIF3) core complex, conserved in yeast and mammals, that interacts with eIF5. Mol Cell Biol 18: 4935–4946

    PubMed  CAS  Google Scholar 

  • Pisarev AV, Kolupaeva VG, Yusupov MM, Hellen CU, Pestova TV (2008) Ribosomal position and contacts of mRNA in eukaryotic translation initiation complexes. EMBO J 27: 1609–1621

    PubMed  CAS  Google Scholar 

  • Pisareva VP, Pisarev AV, Komar AA, Hellen CU, Pestova TV (2008) Translation initiation on mammalian mRNAs with structured 5′UTRs requires DExH-box protein DHX29. Cell 135: 1237–1250

    PubMed  CAS  Google Scholar 

  • Preiss T, Hentze MW (1998) Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature 392: 516–520

    PubMed  CAS  Google Scholar 

  • Ptushkina M, von der Haar T, Vasilescu S, Frank R, Birkenhager R, McCarthy JE (1998) Cooperative modulation by eIF4G of eIF4E-binding to the mRNA 5′ cap in yeast involves a site partially shared by p20. EMBO J 17: 4798–4808

    PubMed  CAS  Google Scholar 

  • Ray BK, Lawson TG, Kramer JC, Cladaras MH, Grifo JA, Abramson RD, Merrick WC, Thach RE (1985) ATP-dependent Unwinding of Messenger RNA Structure by Eukaryotic Initiation Factors. J Biol Chem 260: 7651–7658

    PubMed  CAS  Google Scholar 

  • Richter-Cook NJ, Dever TE, Hensold JO, Merrick WC (1998) Purification and characterization of a new eukaryotic protein translation factor. Eukaryotic initiation factor 4H. J Biol Chem 273: 7579–7587

    PubMed  CAS  Google Scholar 

  • Richter NJ, Rogers GW, Jr., Hensold JO, Merrick WC (1999) Further biochemical and kinetic characterization of human eukaryotic initiation factor 4H. J Biol Chem 274: 35 415–35 424

    CAS  Google Scholar 

  • Robert F, Carrier M, Rawe S, Chen S, Lowe S, Pelletier J (2009) Altering chemosensitivity by modulating translation elongation. PLoS One 4: e5428

    PubMed  Google Scholar 

  • Robert F, Pelletier J (2009) Translation initiation: a critical signalling node in cancer. Expert Opin Ther Targets 13: 1279–1293

    PubMed  CAS  Google Scholar 

  • Rogers GW, Jr., Lima WF, Merrick WC (2001a) Further characterization of the helicase activity of eIF4A. Substrate specificity. J Biol Chem 276: 12 598–12 608

    CAS  Google Scholar 

  • Rogers GW, Jr., Richter NJ, Lima WF, Merrick WC (2001b) Modulation of the helicase activity of eIF4A by eIF4B, eIF4H, and eIF4F. J Biol Chem 276: 30 914–30 922

    CAS  Google Scholar 

  • Rogers GW, Richter NJ, Merrick WC (1999) Biochemical and kinetic characterization of the RNA helicase activity of eukaryotic initiation factor 4A. J Biol Chem 274: 12 236–12 244

    CAS  Google Scholar 

  • Rozen F, Edery I, Meerovitch K, Dever TE, Merrick WC, Sonenberg N (1990) Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F. Mol Cell Biol 10: 1134–1144

    PubMed  CAS  Google Scholar 

  • Rozovsky N, Butterworth AC, Moore MJ (2008) Interactions between eIF4AI and its accessory factors eIF4B and eIF4H. RNA 14: 2136–2148

    PubMed  CAS  Google Scholar 

  • Sachs AB, Bond MW, Kornberg RD (1986) A single gene from yeast for both nuclear and cytoplasmic polyadenylate-binding proteins: domain structure and expression. Cell 45: 827–835

    PubMed  CAS  Google Scholar 

  • Schmid SR, Linder P (1992) D-E-A-D protein family of putative RNA helicases. Mol Microbiol 6: 283–292

    PubMed  CAS  Google Scholar 

  • Schutz P, Bumann M, Oberholzer AE, Bieniossek C, Trachsel H, Altmann M, Baumann U (2008) Crystal structure of the yeast eIF4A-eIF4G complex: an RNA-helicase controlled by protein-protein interactions. Proc Natl Acad Sci USA 105: 9564–9569

    PubMed  CAS  Google Scholar 

  • Shahbazian D, Parsyan A, Petroulakis E, Topisirovic I, Martineau Y, Gibbs BF, Svitkin Y, Sonenberg N. Control of cell survival and proliferation by mammalian eukaryotic initiation factor 4B. Mol Cell Biol 30: 1478–1485

    Google Scholar 

  • Siridechadilok B, Fraser CS, Hall RJ, Doudna JA, Nogales E (2005) Structural roles for human translation factor eIF3 in initiation of protein synthesis. Science 310: 1513–1515

    PubMed  CAS  Google Scholar 

  • Slepenkov SV, Korneeva NL, Rhoads RE (2008) Kinetic mechanism for assembly of the m7GpppG. eIF4E. eIF4G complex. J Biol Chem 283: 25 227–25 237

    CAS  Google Scholar 

  • Sonenberg N (2008) eIF4E, the mRNA cap-binding protein: from basic discovery to translational research. Biochem Cell Biol 86: 178–183

    PubMed  CAS  Google Scholar 

  • Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136: 731–745

    PubMed  CAS  Google Scholar 

  • Sonenberg N, Morgan MA, Merrick WC, Shatkin AJ (1978) A polypeptide in eukaryotic initiation factors that crosslinks specifically to the 5′-terminal cap in mRNA. Proc Natl Acad Sci USA 75: 4843–4847

    PubMed  CAS  Google Scholar 

  • Spahn CM, Beckmann R, Eswar N, Penczek PA, Sali A, Blobel G, Frank J (2001) Structure of the 80S ribosome from Saccharomyces cerevisiae-tRNA-ribosome and subunit-subunit interactions. Cell 107: 373–386

    PubMed  CAS  Google Scholar 

  • Spirin AS (2009) How does a scanning ribosomal particle move along the 5′-untranslated region of eukaryotic mRNA? Brownian Ratchet model. Biochemistry 48: 10688–10692

    PubMed  CAS  Google Scholar 

  • Srivastava S, Verschoor A, Frank J (1992) Eukaryotic initiation factor 3 does not prevent association through physical blockage of the ribosomal subunit-subunit interface. J Mol Biol 226: 301–304

    PubMed  CAS  Google Scholar 

  • Svitkin YV, Evdokimova VM, Brasey A, Pestova TV, Fantus D, Yanagiya A, Imataka H, Skabkin MA, Ovchinnikov LP, Merrick WC, Sonenberg N (2009) General RNA-binding proteins have a function in poly(A)-binding protein-dependent translation. EMBO J 28: 58–68

    PubMed  CAS  Google Scholar 

  • Svitkin YV, Ovchinnikov LP, Dreyfuss G, Sonenberg N (1996) General RNA binding proteins render translation cap dependent. EMBO J 15: 7147–7155

    PubMed  CAS  Google Scholar 

  • Svitkin YV, Pause A, Haghighat A, Pyronnet S, Witherell G, Belsham GJ, Sonenberg N (2001) The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure. RNA 7: 382–394

    PubMed  CAS  Google Scholar 

  • Szamecz B, Rutkai E, Cuchalova L, Munzarova V, Herrmannova A, Nielsen KH, Burela L, Hinnebusch AG, Valasek L (2008) eIF3a cooperates with sequences 5′ of uORF1 to promote resumption of scanning by post-termination ribosomes for reinitiation on GCN4 mRNA. Genes Dev 22: 2414–2425

    PubMed  CAS  Google Scholar 

  • Tarun SJ, Sachs AB (1996) Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J 15: 7168–7177

    PubMed  CAS  Google Scholar 

  • Tarun SZ, Jr., Sachs AB (1997) Binding of eukaryotic translation initiation factor 4E (eIF4E) to eIF4G represses translation of uncapped mRNA. Mol Cell Biol 17: 6876–6886

    PubMed  CAS  Google Scholar 

  • Tarun SZ, Jr., Wells SE, Deardorff JA, Sachs AB (1997) Translation initiation factor eIF4G mediates in vitro poly(A) tail-dependent translation. Proc Natl Acad Sci USA 94: 9046–9051

    PubMed  CAS  Google Scholar 

  • Trachsel H, Erni B, Schreier MH, Staehelin T (1977) Initiation of mammalian protein synthesis. II. The assembly of the initiation complex with purified initiation factors. J Mol Biol 116: 755–767

    PubMed  CAS  Google Scholar 

  • Valasek L, Hasek J, Trachsel H, Imre EM, Ruis H (1999) The Saccharomyces cerevisiae HCR1 gene encoding a homologue of the p35 subunit of human translation initiation factor 3 (eIF3) is a high copy suppressor of a temperature-sensitive mutation in the Rpg1p subunit of yeast eIF3. J Biol Chem 274: 27 567–27 572

    CAS  Google Scholar 

  • Valasek L, Mathew AA, Shin BS, Nielsen KH, Szamecz B, Hinnebusch AG (2003) The yeast eIF3 subunits TIF32/a, NIP1/c, and eIF5 make critical connections with the 40S ribosome in vivo. Genes Dev 17: 786–799

    PubMed  CAS  Google Scholar 

  • Valasek L, Nielsen KH, Hinnebusch AG (2002) Direct eIF2-eIF3 contact in the multifactor complex is important for translation initiation in vivo. EMBO J 21: 5886–5898

    PubMed  CAS  Google Scholar 

  • Valasek L, Nielsen KH, Zhang F, Fekete CA, Hinnebusch AG (2004) Interactions of eukaryotic translation initiation factor 3 (eIF3) subunit NIP1/c with eIF1 and eIF5 promote preinitiation complex assembly and regulate start codon selection. Mol Cell Biol 24: 9437–9455

    PubMed  CAS  Google Scholar 

  • Valasek L, Phan L, Schoenfeld LW, Valaskova V, Hinnebusch AG (2001) Related eIF3 subunits TIF32 and HCR1 interact with an RNA recognition motif in PRT1 required for eIF3 integrity and ribosome binding. EMBO J 20: 891–904

    PubMed  CAS  Google Scholar 

  • Vega Laso MR, Zhu D, Sagliocco F, Brown AJ, Tuite MF, McCarthy JE (1993) Inhibition of translational initiation in the yeast Saccharomyces cerevisiae as a function of the stability and position of hairpin structures in the mRNA leader. J Biol Chem 268: 6453–6462

    Google Scholar 

  • Von Der Haar T, McCarthy JE (2002) Intracellular translation initiation factor levels in Saccharomyces cerevisiae and their role in cap-complex function. Mol Microbiol 46: 531–544

    PubMed  Google Scholar 

  • Vornlocher HP, Hanachi P, Ribeiro S, Hershey JW (1999) A 110-kilodalton subunit of translation initiation factor eIF3 and an associated 135-kilodalton protein are encoded by the Saccharomyces cerevisiae TIF32 and TIF31 genes. J Biol Chem 274: 16 802–16 812

    CAS  Google Scholar 

  • Westermann P, Nygard O (1984) Cross-linking of mRNA to initiation factor eIF-3, 24 kDa cap binding protein and ribosomal proteins S1, S3/3a, S6 and S11 within the 48S pre-initiation complex. Nucleic Acids Res 12: 8887–8897

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Singh CR, Marintchev A, Hall NS, Hannig EM, Wagner G, Asano K (2005) The eukaryotic initiation factor (eIF) 5 HEAT domain mediates multifactor assembly and scanning with distinct interfaces to eIF1, eIF2, eIF3, and eIF4G. Proc Natl Acad Sci USA 102: 16164–16 169

    PubMed  CAS  Google Scholar 

  • Yang Q, Del Campo M, Lambowitz AM, Jankowsky E (2007) DEAD-box proteins unwind duplexes by local strand separation. Mol Cell 28: 253–263

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Mitchell, S.F., Walker, S.E., Rajagopal, V., Aitken, C.E., Lorsch, J.R. (2011). Recruiting knotty partners: The roles of translation initiation factors in mRNA recruitment to the eukaryotic ribosome. In: Rodnina, M.V., Wintermeyer, W., Green, R. (eds) Ribosomes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0215-2_13

Download citation

Publish with us

Policies and ethics