Kardiale Labordiagnostik

  • Gabriele Halwachs-Baumann


In den letzten Jahren haben sich die Möglichkeiten der kardialen Labordiagnostik wesentlich erweitert. Grundsätzlich können vier Fragestellungen unterschieden werden:
  1. 1.

    Diagnostik von myokardialer Gewebszerstörung (in den häufigsten Fällen ischämische Ursache: akutes Koronarsyndrom mit den klinischen Symptomen, die von unstabiler Angina pectoris bis Myokardinfarkt reichen)

  2. 2.

    Diagnostik der Herzinsuffizienz

  3. 3.

    labordiagnostisch feststellbare Risikofaktoren für Atherosklerose

  4. 4.

    molekulargenetische kardiale Prädispositionsdiagnostik



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. Löffler G (1998) Basiswissen Biochemie mit Pathobiochemie. Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. Thomas L (1998) Labor und Diagnose. TH-Books Verlagsgesellschaft mbH, Frankfurt/MainGoogle Scholar


  1. 1.
    The Joint European Society of Cardiology/American College of Cardiology Committee. Myocardial infarction redefined — A consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of Myocardial infarction (2000). Eur Heart J 21: 1502–1513CrossRefGoogle Scholar
  2. 2.
    Wu A H B, Laios I, Green S, Gornet T G, Wong S S, Parmley L, Tonnesen A S, Plaisier B, Orlando R (1994) Immunoassays for serum and urine myoglobin: Myoglobin clearance assessed as a risk factor for acute renal failure. Clin Chem 40(5): 796–802PubMedGoogle Scholar
  3. 3.
    Halwachs G, Iberer F, Pieber T, Müller H, Tscheliessnigg K H, Tiran A, Sabin K, Wilders-Truschnig M (1996) Troponin T as a marker for postransplantation adaptational problems of the donor heart. J Heart Lung Transplant 15(5): 451–455PubMedGoogle Scholar
  4. 4.
    Keller T., Zeller T., Peetz D., et al (2009) Sensitive Troponin I assay in early diagnosis of acute myocardial infarction. N Engl J Med 361(9): 868–877PubMedCrossRefGoogle Scholar
  5. 5.
    Antman E M, Milenko J T, Thompson B, Schactman M, McCabe C H, Cannon C P, Fischer G A, Fung A Y, Thompson C, Wybenga D, Braunwald E (1996) Cardiac-specific troponin I levels to predict the risk of mortality in patients with acute coronary syndromes. N Engl J Med 335(18): 1342–1349PubMedCrossRefGoogle Scholar
  6. 6.
    Galvani M, Ottani F, Ferrini D, Ladenson J H, Destro A, Baccos D, Rusticani F, Jaffe A S (1997) Prognostic influence of elevated values of cardiac troponin I in patients with unstable angina. Circulation 95(8): 2053–2059PubMedGoogle Scholar
  7. 7.
    Ottani F, Galvani M, Ferrini D, Ladenson J H, Puggioni R, Destro A, Baccos D, Bosi S, Ronchi A, Rusticani F, Jaffe A S (1999) Direct comparison of early elevations of cardiac troponin T in patients with clinical unstable angina. Am Heart J 137(2): 284–291PubMedCrossRefGoogle Scholar
  8. 8.
    Kontos M C, Shah R, Fritz L M, Anderson P F, Tatum J L, Ornato J P, Jesse R L (2004) Implication of different cardiac troponin I levels for clinical outcomes and prognosis of acute chest pain patients. JACC 43(6): 958–965PubMedGoogle Scholar
  9. 9.
    Horwich T B, Patel J, MacLellan R, Fonarow G C (2003) Cardiac troponin I is associated with impaired hemodynamics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure. Circulation 108: 833–838PubMedCrossRefGoogle Scholar
  10. 10.
    Landesberg G, Shatz V, Akopnik I, Wolf Y G, Mayer M, Berlatzky Y, Weissman C, Mosseri M (2003) Association of cardiac troponin, CK-MB, and postoperative myocardial ischemia with long-term survival after major vascular surgery. JACC 42(9): 1547–1554PubMedGoogle Scholar
  11. 11.
    Kim L J, Martinez E A, Faraday N, Dorman T, Fleisher L A, Perler B A, Williams M, Chan D, Pronovost P J (2002) Cardiac troponin I predicts short-term mortality in vascular surgery patients. Circulation 106: 2366–2371PubMedCrossRefGoogle Scholar
  12. 12.
    Potapov E V, Wagner F D, Loebe M, Ivanitskaia E A, Muller C, Sodia A, Jonitz B, Hetzer R (2003) Elevated donor cardiac troponin T and procalcitonin indicate independent mechanisms of early graft failure after heart transplantation. Int J Cardiol 92(2–3): 163–167PubMedCrossRefGoogle Scholar
  13. 13.
    Tate J R, Heathcote D, Rayfield J, Hickman P E (1999) The lack of standardization of cardiac troponin I assay systems. Clin Chim Acta 284: 141–149PubMedCrossRefGoogle Scholar
  14. 14.
    Venge P, Lageryvist B, Diderholm E, Lindahl B, Wallentin L (2002) Clinical performance of three cardiac troponin assays in patients with unstable koronary artery disease (a FRISC II substudy). Am J Cardiol 89: 1035–1041PubMedCrossRefGoogle Scholar
  15. 15.
    Jossi S., Gordon S.L., Legge M.A., Armstrong G.P. (2006) All troponins are not created equal. Internal Medicine Journal 36: 325–327PubMedCrossRefGoogle Scholar
  16. 16.
    Antman E M (2002) Dicision making with cardiac troponin tests. N Engl J Med 346(26): 2079–2082PubMedCrossRefGoogle Scholar
  17. 17.
    Apple F S, Wu A H B, Jaffee A S (2002) European society of cardiology and American college of cardiology guidelines for redefinition of myocardial infarction: How to use existing assays clinically and for clinical trials. Am Heart J 144: 981–986PubMedCrossRefGoogle Scholar
  18. 18.
    Antmann E. M. et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American College of Cardiology /American Heart Association Tsk Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for the management of Patients with acute myocardial infarction) ACC/AHA Practice Guidelines 2004; available at www.acc.arg/clinical/guidelines/stemi/index.pdf
  19. 19.
    Christenson R. H. (2007) Biomarkers of acute koronary syndromes and heart failure. Laboratory Medicine Practice Guidelines of the National Academy of Clinical BiochemistryGoogle Scholar
  20. 20.
    Fox K A A, Birkhead J, Wilcox R, Knight C, Barth J (2004) British cardiac society working group on the definition of myocardial infarction. Heart 90: 603–609PubMedCrossRefGoogle Scholar
  21. 21.
    Bassand J. P. et al (2007) guidelines for the diagnosis and treatment of non-ST-segment elevation acute koronary syndromes. European Heart Journal 28: 1598–1660PubMedCrossRefGoogle Scholar
  22. 22.
    Stewart J T, French J K, Theroux P, Ramanathan K, Solymoss BC, Johnson R, White H D (1998) Early noninvasive identification of failed reperfusion after intravenous thrombolytic therapy in acute myocardial infarction. JACC 31(7): 1499–1505PubMedGoogle Scholar
  23. 23.
    Laperche T, Golmard J L, Steg P G (1997) Early behavior of biochemical markers in patients with thrombolysis in myocardial infarction grade 2 flow in the infarcted artery as opposed to their flow grades after intravenous thrombolysis for acute myocardial infarction. PERM study group. Prospective evaluation of reperfusion markers. Am Heart J 134(6): 1044–1051PubMedCrossRefGoogle Scholar
  24. 24.
    Kragten J A, Hermens W T, van Dieijen-Visser M P (1997) Cumulative troponin T release after acute myocardial infarction. Influence of reperfusion. Eur J Clin Chem Clin Biochem 35(6): 459–467PubMedGoogle Scholar
  25. 25.
    Veerkamp J H, Maatman R G H J (1995) Cytoplasmic fatty acid-binding proteins: their structure and genes. Prog Lipid Res 34: 17–52PubMedCrossRefGoogle Scholar
  26. 26.
    Alhadi H A, Fox K A A (2004) Do we need additional markers of myocyte necrosis: the potential value of heart fatty-acid-binding protein. Q J Med 97: 187–198Google Scholar
  27. 27.
    Van Nieuwenhoven F A, Kleine A H, Wodzig W H, Hermens W T, Kragten H A, Maessen J G, Punt C D, Van Dieijen M P, Van Der Vusse G J, Glatz J F C (1995) Discrimination between myocardial and skeletal muscle injury by assessment of the plasma ratio of myoglobin over fatty acid-binding protein. Circulation 92: 2848–2854PubMedGoogle Scholar
  28. 28.
    Wu A H B, Graff L, Petry C, Armstrong G, Prigent F, Brown M (2000) Role of heart-type fatty acid-binding protein in early detection of acute myocardial infarction. Clin Chem 46: 718–719PubMedGoogle Scholar
  29. 29.
    Gorski J, Hermens W T, Borawski J, Mysliwiec M, Glatz J F C (1997) Increased fatty acid-binding protein concentration in plasma of patients with chronic renal failure. Clin Chem 43: 193a–195aGoogle Scholar
  30. 30.
    ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult (2001) Executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to revise the 1995 guidelines for the evaluation and management of heart failure). Circulation 104: 2996–3007CrossRefGoogle Scholar
  31. 32.
    Levin E R, Gardner D G, Samson W K (1998) Natriuretic peptides. N Engl J Med 339(5): 321–328PubMedCrossRefGoogle Scholar
  32. 33.
    Omland T, Aakvaag A, Bonarjee V V S, Caidahl K, Lie R T, Nilsen D W T, Sundsfjord J A, Dickstein K (1996) Plasma brain natriuretic peptide as an indicator of left ventricular systolic function and long-term survival after acute myocardial infarction. Circulation 93: 1963–1969PubMedGoogle Scholar
  33. 34.
    McNairy M, Gardetto N, Clopton P, Garcia A, Krishnaswamy P, Kazanegra R, Ziegler M, Maisel A S (2002) Stability of B-type natriuretic peptide levels during acercise in patients with congestive heart failure: Implications for autopatient monitoring with B-type natriuretic peptide. Am Heart J 143:406–411PubMedCrossRefGoogle Scholar
  34. 35.
    Loke I, Squire I B, Davies J E, Ng L L (2003) Reference ranges for natriuretic peptides for diagnostic use are dependent on age, gender and heart rate. Europ J Heart Fail 5: 599–606CrossRefGoogle Scholar
  35. 36.
    Redfield M M, Rodeheffer R J, Jacobsen S J, Mahoney D W, Bailey K R, Burnett J C (2002) Plasma brain natriuretic peptide concentration: Impact of age and gender. JACC 40(5): 976–982PubMedGoogle Scholar
  36. 37.
    Maisel A S, Clopton P, Krishaswamy P, Nowak R M, McCord J, Hollander J E, Duc P, Omland T, Storrow A B, Abraham W T, Wu A H B, Steg G, Westheim A, Knudsen C W, Perez A, Kazanegra R, Bhalla V, Herrmann H C, Aumont M C, McCullough P A (2004) Impact of age, race, and sex on the ability of B-type natriuretic peptide to aid in the emergency diagnosis of heart failure: Results from the breathing not properly (BNP) multinational study. Am Heart J 147: 1078–1084PubMedCrossRefGoogle Scholar
  37. 38.
    McCord J, Mundy B J, Hudson M P, Maisel A S, Hollander J E, Abraham W T, Steg P G, Omland T, Knudsen C W, Sandberg K R, McCullough P A (2004) Relationship between obesity and B-type natriuretic peptide levels. Arch Intern Med 164: 2247–2252PubMedCrossRefGoogle Scholar
  38. 39.
    McCullough P A, Nowak R M, McCord J, Hollander J E, Herrmann H C, Steg P G, Duc P, Westheim A, Omland T, Knudsen C W, Storrow A B, Abraham W T, Lamba S, Wu A H B, Perez A, Clopton P, Krishnaswamy P, Kazanegra R, Maisel A S (2002) B-Type natriuretic peptide and clinical judgment in emergency diagnosis of heart failure. Circulation 106: 416–422PubMedCrossRefGoogle Scholar
  39. 40.
    Dao Q, Krishnaswamy P, Kazanegra R, Harrison A, Amirnovin R, Lenert L, Clopt9n P, Alberto J, Hlavin P, Maisel A S (2001) Utility of B-type natriuretic peptide in the diagnosis of congestive heart failure in an urgent-care setting. JACC 37(2): 379–385PubMedGoogle Scholar
  40. 41.
    Shapiro B P, Chen H H, Burnett J C, Redfield M M (2003) Use of plasma brain natriuretic peptide concentration to aid in the diagnosis of heart failure. Mayo Clin Proc 78: 481–486PubMedCrossRefGoogle Scholar
  41. 42.
    Maisel A S, Krishaswamy P, Nowak R M, McCord J, Hollander J E, Due P, Omland T, Storrow A B, Abraham W T, Wu A H B, Clopton P, Steg P G, Westheim A, Knudsen C W, Perez A, Kazanegra R, Herrmann H C, McCullough P A (2002) Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 347(3): 161–167PubMedCrossRefGoogle Scholar
  42. 43.
    Mueller C, Scholer A, Laule-Kilian K, Martina B, Schindler C, Buser P, Pfisterer M, Perruchoud A P (2004) Use of B-type natriuretic peptide in the evaluation and management of acute dyspnea. N Engl J Med 350(7): 647–654PubMedCrossRefGoogle Scholar
  43. 44.
    Hedberg P, Lönnberg I, Jonason T, Nilsson G, Pehrsson K, Ringqvist I (2004) Electrocardiogram and B-type natriuretic peptide as screening tools for left ventricular systolic dysfunction in a population-based sample of 75-year-old men and women. Am Heart J 148: 524–529PubMedCrossRefGoogle Scholar
  44. 45.
    Hansen M S, Stanton E B, Gawad Y, Packer M, Pitt B, Swedberg K, Rouleau J L (2002) Relation of circulating cardiac myosin light chain 1 isoform in stable severe congestive heart failure to survival and treatment with Flosequin. Am J Cardiol 90: 969–973PubMedCrossRefGoogle Scholar
  45. 46.
    Olivetti G, Abbi R, Yuaini F, Kajstury J, Cheng W, Natahara J A, Yuaini E, Di Loreto C, Feltrami C A, Krajewski S, Reed J C, Anversa P (1997) Apoptosis in the failing human heart. N Engl J Med 336(16): 1131–1141PubMedCrossRefGoogle Scholar
  46. 47.
    Hillis GS, Zhao N, Taggart P, Dalsey W C, Mangione A (1999) Utility of cardiac troponin I, creatine kinase MB mass, myosin light cahin 1, and myoglobin in the early in-hospital triage of „high risk“ patients with chest pain. Heart 82: 614–620PubMedGoogle Scholar
  47. 48.
    Isobe M, Nagai R, Ueda S, Tsuchimochi H, Nakaoka H, Takaku F, Yamaguchi T, Machii K, Nobuyoshi M, Yazaki Y (1987) Quantitative relationship between left ventricular function and serum cardiac myosin lieght chain I levels after koronary reperfusion in patients with acute mayocardial infarction. Circulation 76(6): 1251–1261PubMedGoogle Scholar
  48. 49.
    Katus H A, Diederich K W, Hoberg E, Kubler W (1988) Circulating cardiac myosin light chains in patients with angina at rest: identification of a high risk subgroup. J Am Coll Cardiol 11(3): 487–493PubMedCrossRefGoogle Scholar
  49. 50.
    Kawai Y, Yoshida M, Arakawa K, Kumamoto T, Morikawa N, Masamura K, Tada H, Ito S, Hoshizaki H, Oshima S, Taniguchi K, Terasawa H, Miyamori I, Kishi K, Yasuda T (2004) Diagnostic use of serum deoxyribonucleae I activity as a novel early-phase marker in acute myocardial infarction. Circulation 109: 2398–2400PubMedCrossRefGoogle Scholar
  50. 51.
    Yao M, Keogh A, Spratt P, dos Remedios C G, Kiessling P C (1996) Elevated Dnase I levels in human idiopathic dilated cardiomyopathy: an indicator of apoptosis? J Mol Cell Cardiol 28(1): 95–101PubMedCrossRefGoogle Scholar
  51. 52.
    Dawber T R, Kannel W B, Revotskie N, Stokes J I, Kagan A, Gordon T (1959) Some factors associated with the development of coronary heart disease; six years’ follow-up experience in the Framingham Study. Am J Public Health 49: 1349–1356CrossRefGoogle Scholar
  52. 53.
    Wilson P W F, D’Agostino R B, Levy D, Belanger A M, Silbershatz H, Kannel W B (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97: 1837–1847PubMedGoogle Scholar
  53. 54.
    Assmann G, Cullen P, Schulte H (2002) Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Münster (PROCAM) study. Circulation 105: 310–315PubMedCrossRefGoogle Scholar
  54. 56.
    Ross R, Glomset J A (1976) The pathogenesis of atherosclerosis (first & second part). N Engl J Med 295(7): 369–377 & 295 (8): 420–425PubMedCrossRefGoogle Scholar
  55. 57.
    Ervin R B, Wright J D, Wang C Y, Kennedy-Stephenson J (2004) Dietary intake of fats and fatty acids for the United States population: 1999–2000. Advance data from vital and health statistics; no 348. National Center for Health Statistics, Hyattsville, MarylandGoogle Scholar
  56. 58.
    Obisesan T O, Aliyu M H, Adediran A S, Bond V, Maxwell C J, Rotimi C N (2004) Correlates of serum lipoprotein (A) in children and adolescents in the United States. The third National Health Nutrition and Examination Survey (NHANES-III). Lipids in Health and Disease 3(29)Google Scholar
  57. 59.
    Stanger O (2004) Homocystein — Grundlagen, Klinik, Therapie, Prävention. Verlag Wilhelm Maudrich Wien, München, BernGoogle Scholar
  58. 60.
    Benditt E P, Barrett T, McDougall J K (1983) Viruses in the etiology of atherosclerosis. Proc Natl Acad Sci USA 80: 6386–6389PubMedCrossRefGoogle Scholar
  59. 61.
    Melnick J L, Adam E, DeBakey M E (1993) Cytomegalovirus and atherosclerosis. Eur Heart J 14[Suppl K]: 30–38PubMedGoogle Scholar
  60. 62.
    Valantine H A (2004) The role of viruses in cardiac allograft vasculopathy. Am J Transplant 4(2): 169–177PubMedCrossRefGoogle Scholar
  61. 63.
    Chiu B, Viira E, Tucker W, Fong IW (1997) Chlamydia pneumonite, cytomegalovirus, and herpes simplex virus in atherosclerosis of the carotid artery. Circulation 96(7): 2144–2148PubMedGoogle Scholar
  62. 64.
    Latsios G, Saetta A, Michalopoulos N V, Agapitos E, Patsouris E (2004) Detection of cytomegalovirus, Helicobacter pylori and Clamydia pneumoniae DNA in carotid atherosclerotic plaques by the polymerase chain reaction. Acta Cardiol 59(6): 652–657PubMedCrossRefGoogle Scholar
  63. 65.
    Marenberg M E, Risch N, Berkman L F, Floderus B, de Faire U (1994) Genetic susceptibility to death from coronary heart disease in a study of twins. N Engl J Med 330: 1041–1046PubMedCrossRefGoogle Scholar
  64. 66.
    Michaels L (1966) Aetiology of coronary artery disease: An historical approach. Br Heart J 28: 258–264PubMedCrossRefGoogle Scholar
  65. 67.
    Ryle J A, Russell W T (1949) The natural history of coronary disease: A clinical and epidemiological study. Br Heart J 11: 370–391PubMedCrossRefGoogle Scholar
  66. 68.
    Tai E S, Tan C E (2004) Genes, diet and serum lipid concentrations: lessons from ethically diverse populations and their relevance to coronary heart diesease in Asia. Curr Opin Lipidol 15: 5–12PubMedCrossRefGoogle Scholar
  67. 69.
    Ordovas J M, Corella D, Demissie S, Cupples A, Couture P, Coltell O, Wilson P W F, Schaefer E J, Tucker K L (2002) Dietary fat intake determines the effect of a common polymorphism in the hepatic lipase gene promoteron hght-density lipoprotein metabolism. Circulation 106: 2315–2321PubMedCrossRefGoogle Scholar
  68. 71.
    Ilveskoski E, Perola M, Lehtimäki T, Lappala P, Savolainen V, Pajarinen J, Penttilä A, Lalu K H, Männikkö A, Liesto K K, Koivula T, Karhunen P J (1999) Age-dependent association of apolipoprotein E genotype with coronary and aortic atherosclerosis in middle-aged men. Circulation 100: 608–613PubMedGoogle Scholar
  69. 72.
    Hong S H, Park W H, Lee C C, Song J H, Kim J Q (1997) Association between genetic variations of aop AI-CIII-AIV cluster gene and hypertriglyceridemic subjects. Clin Chem 43(1): 13–17PubMedGoogle Scholar
  70. 73.
    Myant N B (1993) Familial defective apopipoprotein B-100:a review, including comparisons with familial hypercholesterolaemia. Atherosclerosis 104(1–2): 1–18PubMedCrossRefGoogle Scholar
  71. 74.
    Couture P, Otvos J D, Cupples L A, Wilson P W F, Schaefer E J, Ordovas J M (1999) Association of the A-204C polymorphism in the cholesterol 7α-hydroxylase gene with variations in plasma low density lipoprotein cholesterol levels in the Framingham Offspring Study. J Lipid Res 40: 1883–1889PubMedGoogle Scholar
  72. 75.
    Doris P A (2002) Hypertension genetics, single nucleotide polymorphisms, and the common disease: Common variant hypothesis. Hypertension 39: 323–331PubMedCrossRefGoogle Scholar
  73. 76.
    Williams M S, Bray P F (2001) Genetics of arterial prothrombotic risk states. Exp Biol Med 226(5): 409–419Google Scholar
  74. 77.
    Yamada Y, Izawa H, Ichihara S, Takatsu F, Ishihara H, Hirayama H, Sone T, Tanaka M, Yokota M (2002) Prediciton of the risk of myocardial infarction from polymorphisms in candidate genes. N Engl J Med 347: 1916–1923PubMedCrossRefGoogle Scholar
  75. 78.
    Pasotti M, Repetto A, Gavazzi L, Arbustivi E (2004) Genetic predisposition to heart failure. Med Clin N Am 88: 1173–1192PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2011

Authors and Affiliations

  • Gabriele Halwachs-Baumann
    • 1
  1. 1.Institut für Medizinische und Chemische Labordiagnostik, Krankenhaus SteyrSteyrÖsterreich

Personalised recommendations