Skip to main content
Book cover

Giardia pp 233–244Cite as

Post-transcriptional Gene Silencing and Translation in Giardia

  • Chapter

Abstract

The control of gene expression in Giardia lamblia includes several mechanisms already described in higher eukaryotes, but with some interesting features for this early-branching organism. Here we describe two gene expression control systems in Giardia, posttranscriptional gene silencing (PTGS) and translation, and the close interaction between them. For the first mechanism, all the components were identified as being active in this cell, their sequences were analyzed and their localization was identified. Even more important was the implication of this mechanism in the process of antigenic variation in this parasite, which reflects the involvement of the RNAi pathway in variant-specific surface protein (VSP) regulation and switching. Regarding the translational system, the principal characteristics of this parasite are the lack of ribosome scanning mechanism and a prokaryotic resemblance in the small ribosomal subunit recruitment process. Even though the presence of some, but not all, eukaryotic in itiation factors could represent a simplified “cap-dependent” process, there is also the possibility that microRNAs could be involved in translation regulation. In general, we can assume that this intestinal parasite has either simplified the gene expression control machinery due to their parasitic life style or, on the other hand, we are privileged witnesses of how the evolutionary process takes place.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam RD (1991) The biology of Giardia spp. Microbiol Rev 55: 706–732

    PubMed  CAS  Google Scholar 

  • Adam RD (2000) The Giardia lamblia genome. Int J Parasitol 30: 475–484

    Article  PubMed  CAS  Google Scholar 

  • Adam RD (2001) Biology of Giardia lamblia. Clin Microbiol Rev 14: 447–475

    Article  PubMed  CAS  Google Scholar 

  • Altmann M, Muller PP, Pelletier J, Sonenberg N, and Trachsel H (1989) A mammalian translation initiation factor can substitute for its yeast homologue in vivo. J Biol Chem 264: 12145–12147

    PubMed  CAS  Google Scholar 

  • Benelli D and Londei P (2009) Begin at the beginning: evolution of translation initiation. Res Microbiol 160: 493–501

    Article  PubMed  CAS  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, and Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409: 363–366

    Article  PubMed  CAS  Google Scholar 

  • Bruchhaus I, Leippe M, Lioutas C, and Tannich E (1993) Unusual gene organization in the protozoan parasite Entamoeba histolytica. DNA Cell Biol 12(10): 925–933

    PubMed  CAS  Google Scholar 

  • Bunjun S, Stathopoulos C, Graham D, Min B, Kitabatake M, Wang AL, Wang CC, Vivarès CP, Weiss LM, and Söll D (2000) A dual-specificity aminoacyl-tRNA synthetase in the deep-rooted eukaryote Giardia lamblia. PNAS 97(24): 12997–13002

    Article  PubMed  CAS  Google Scholar 

  • Carmell MA, Xuan Z, Zhang MQ, and Hannon GJ (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev 16: 2733–2742

    Article  PubMed  CAS  Google Scholar 

  • Carthew RW and Sontheimer EJ (2009) Origins and mechanisms of miRNA and siRNAs. Cell 136: 642–655

    Article  PubMed  CAS  Google Scholar 

  • Cerutti H and Casas-Mollano JA (2006) On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 50: 81–99

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Collins LJ, Biggs PJ, and Penny D (2009) High throughput genome-wide survey of small RNAs from parasitic protists Giardia intestinalis and Trichomonas vaginalis. Genome Biol Evol 1: 165–175

    Article  PubMed  Google Scholar 

  • Cigan AM and Donahue TF (1987) Sequence and structural features associated with translational initiator regions in yeast — a review. Gene 59: 1–18

    Article  PubMed  CAS  Google Scholar 

  • Cogoni C and Macino G (1999). Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399: 166–169

    Article  PubMed  CAS  Google Scholar 

  • Cogoni C, Irelan JT, Schumacher M, Schmidhauser TJ, Selker EU, and Macino G (1996) Transgene silencing of the al-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA-DNA interactions or DNA methylation. EMBO J 15: 3153–3163

    PubMed  CAS  Google Scholar 

  • Davis-Hayman SR, Shah PH, Finley RW, Lushbaugh WB, and Meade JC (2000) Trichomonas vaginalis: analysis of a heat-inducible member of the cytosolic heat-shock-protein 70 multigene family. Parasitol Res 86: 608–612

    Article  PubMed  CAS  Google Scholar 

  • Dever TE (2002) Gene-specific regulation by general translation factors. Cell 108: 545–556

    Article  PubMed  CAS  Google Scholar 

  • Fagard M, Boutet S, Morel JB, Bellini C, and Vaucheret H (2000) AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc Natl Acad Sci USA 97: 11650–11654

    Article  PubMed  CAS  Google Scholar 

  • Filipowicz W, Jaskiewicz L, Kolb FA, and Pillai RS (2005) Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol 15: 331–341

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, and Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806–811

    Article  PubMed  CAS  Google Scholar 

  • Franzén O, Jerlström-Hultqvist J, Castro E, Sherwood E, Ankarklev J, Reiner D, Palm D, Andersson J, Andersson B, and Svärd S (2009) Draft Genome Sequencing of Giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species? PLoS Pathog 5(8): e1000560

    Article  PubMed  Google Scholar 

  • Furuichi Y and Shatkin AJ (2000) Viral and cellular mRNA capping: past and prospects. Adv Virus Res 55: 135–184

    Article  PubMed  CAS  Google Scholar 

  • Gingras AC, Raught B, and Sonenberg N (1999) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68: 913–963

    Article  PubMed  CAS  Google Scholar 

  • Gold L (1988) Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev Biochem 57: 199–233

    Article  PubMed  CAS  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418: 244–251

    Article  PubMed  CAS  Google Scholar 

  • Hernández G (2009) On the origin of the cap-dependent initiation of translation in eukaryotes. Trends Biochem Sci 34(4): 166–175

    Article  PubMed  Google Scholar 

  • Hock J and Meister G (2008) The Argonaute protein family. Genome Biol 9: 210

    Article  PubMed  Google Scholar 

  • Ibba M and Söll D (2000) Aminoacyl-tRNA synthesis. Annu Rev Biochem 69: 617–650

    Article  PubMed  CAS  Google Scholar 

  • Jackson RJ, Hellen CU, and Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 10: (in press)

    Google Scholar 

  • Kirpides NC and Woese CR (1998) Universally conserved translation initiation factors. Proc Natl Acad Sci USA 95: 224–228

    Article  Google Scholar 

  • Kiss T (2002) Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 109: 145–148

    Article  PubMed  CAS  Google Scholar 

  • Knodler LA, Svärd SG, Silberman JD, Davids BJ, and Gillin FD (1999) Developmental gene regulation in Giardia lamblia: first evidence for an encystation-specific promoter and differential 59 mRNA processing. Mol Microbiol 34: 327–340

    Article  PubMed  CAS  Google Scholar 

  • Kolev NG and Ullu E (2009) snoRNAs in Giardia lamblia: a novel role in RNA silencing? Trends Parasitol 25: 348–350

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15: 8125–8148

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1991) A short leader sequence impairs the fidelity of initiation by eukaryotic ribosomes. Gene Expr 1: 111–115

    PubMed  CAS  Google Scholar 

  • Li L and Wang CC (2004) Capped mRNA with a single nucleotide leader is optimally translated in a primitive eukaryote, Giardia lamblia. J Biol Chem 279(15): 14656–14664

    Article  PubMed  CAS  Google Scholar 

  • Li L, Wang CC (2005) Identification in the ancient protist Giardia lamblia of two eukaryotic translation initiation factor 4E homologues with distinctive functions. Eukaryot Cell 4(5): 948–959

    Article  PubMed  CAS  Google Scholar 

  • Ma JB, Yuan YR, Meister G, Pei Y, Tuschl T, and Patel DJ (2005) Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434: 666–670

    CAS  Google Scholar 

  • MacRae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams PD, and Doudna J (2006) Structural basis for double-stranded RNA processing by Dicer. Science 311: 195–198

    Article  PubMed  CAS  Google Scholar 

  • Matzke MA and Birchler JA (2005) RNAi-mediated pathways in the nucleus. Nat Rev Genet 6: 24–35

    Article  PubMed  CAS  Google Scholar 

  • Meister G and Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431: 343–349

    Article  PubMed  CAS  Google Scholar 

  • Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, et al. (2007) Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317: 1921–1926

    Article  PubMed  CAS  Google Scholar 

  • Napoli C, Lemieux C, and Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2: 279–289

    PubMed  CAS  Google Scholar 

  • Nowotny M and Yang W (2009) Structural and functional modules in RNA interference. Curr Opin Struct Biol 19: 286–293

    Article  PubMed  CAS  Google Scholar 

  • Peattie DA, Alonso RA, Hein A, and Caulfield JP (1989) Ultrastructural localization of giardins to the edges of disk microribbons of Giarida lamblia and the nucleotide and deduced protein sequence of alpha giardin. J Cell Biol 109: 2323–2335

    Article  PubMed  CAS  Google Scholar 

  • Pratt AJ and MacRae IJ (2009) The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem 284: 17897–17901

    Article  PubMed  CAS  Google Scholar 

  • Prevot D, Decimo D, Herbreteau CH, Roux F, Garin J, Darlix JL, and Ohlmann T (2003) Characterization of a novel RNA-binding region of eIF4GI critical for ribosomal scanning. EMBO J. 22: 1909–1921

    Article  PubMed  CAS  Google Scholar 

  • Prucca CG, Slavin I, Quiroga R, Elias EV, Rivero FD, Saura A, Carranza PG, and Lujan HD (2008) Antigenic variation in Giardia lamblia is regulated by RNA interference. Nature 456: 750–754

    Article  PubMed  CAS  Google Scholar 

  • Ro-Choi TS (1999) Nuclear snRNA and nuclear function (discovery of 5′ cap structures in RNA). Crit Rev Eukaryot Gene Expr 9: 107–158

    Article  PubMed  CAS  Google Scholar 

  • Sachs AB, Sarnow P, and Hentze MW (1997) Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 89: 831–838

    Article  PubMed  CAS  Google Scholar 

  • Saraiya AA and Wang CC (2008) snoRNA, a novel precursor of microRNA in Giardia lamblia. PLoS Pathog 4: e1000224

    Article  PubMed  Google Scholar 

  • Sashital DG and Doudna JA (2010) Structural insights into RNA interference. Curr Opin Struct Biol 20(1): 90–97

    Article  PubMed  CAS  Google Scholar 

  • Shuman S (2001) Structure, mechanism, and evolution of the mRNA capping apparatus. Prog Nucleic Acid Res Mol Biol 66: 1–40

    Article  PubMed  CAS  Google Scholar 

  • Singer SM, Yee J, and Nash TE (1998) Episomal and integrated maintenance of foreign DNA in Giardia lamblia. Mol Biochem Parasitol 92: 59–69

    Article  PubMed  CAS  Google Scholar 

  • Siomi H and Siomi CM (2009) On the road to reading the RNA-interference code. Nature 457: 396–404

    Article  PubMed  CAS  Google Scholar 

  • Sogin ML, Gunderson JH, Elwood J, Alonso HJ, and Peattie DA (1989) Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science 243: 75–77

    Article  PubMed  CAS  Google Scholar 

  • Sprengart ML, Fatscher HP, and Fuchs E (1990) The initiation of translation in E. coli: apparent base pairing between the 16S ribosomal RNA and downstream sequences of the mRNA. Nucleic Acids Res 18: 1719–1723

    Article  PubMed  CAS  Google Scholar 

  • Sprengart ML, Fuchs E, and Porter AG (1996) The downstream box: an efficient and independent translation initiation signal in Escherichia coli. EMBO J 15: 665–674

    PubMed  CAS  Google Scholar 

  • Stathopoulos C, Li T, Longman R, Vothknecht UC, Becker H, Ibba M, and Söll D (2000) One polypeptide with two aminoacyl-tRNA synthetase activities. Science 287: 479–482

    Article  PubMed  CAS  Google Scholar 

  • Sun CH and Tai JH (1999) Identification and characterization of a ran gene promoter in the protozoan pathogen Giardia lamblia. J Biol Chem 274: 19699–19706

    Article  PubMed  CAS  Google Scholar 

  • Tang G (2005) siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 30: 106–114

    Article  PubMed  CAS  Google Scholar 

  • Thomson T and Lin H (2009) The biogenesis and function PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol 25: 355–376

    Article  PubMed  CAS  Google Scholar 

  • Tomari Y and Zamore PD (2005) Perspective: machines for RNAi. Genes Dev 19: 517–529

    Article  PubMed  CAS  Google Scholar 

  • Ullu E, Tschudi C, and Chakraborty T (2004) RNA interference in protozoan parasites. Cell Microbiol 6: 509–519

    Article  PubMed  CAS  Google Scholar 

  • Ullu E, Lujan HD, and Tschudi C (2005) Small sense and antisense RNAs derived from a telomeric retroposon family in Giardia intestinalis. Eukaryot Cell 4: 1155–1157

    Article  PubMed  CAS  Google Scholar 

  • White RJ and Sharrocks AD (2010) Coordinated control of the gene expression machinery. Trends Genet 26(5): 214–220

    Article  PubMed  CAS  Google Scholar 

  • White TC and Wang CC (1990) RNA dependent RNA polymerase activity associated with the double-stranded RNA virus of Giardia lamblia. Nucleic Acids Res 18: 553–559

    Article  PubMed  CAS  Google Scholar 

  • Yang CY, Zhou H, Luo J, and Qu LH (2005) Identification of 20 snoRNA-like RNAs from the primitive eukaryote, Giardia lamblia. Biochem Biophys Res Commun 328: 1224–1231

    Article  PubMed  CAS  Google Scholar 

  • Yu DC, Wang AL, Botka CW, and Wang CC (1998) Protein synthesis in Giardia lamblia may involve interaction between a downstream box (DB) in mRNA and an anti-DB in the 16S-like ribosomal RNA. Mol Biochem Parasitol 96(1–2): 151–165

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Gargantini, P.R., Prucca, C.G., Luján, H.D. (2011). Post-transcriptional Gene Silencing and Translation in Giardia . In: Luján, H.D., Svärd, S. (eds) Giardia. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0198-8_15

Download citation

Publish with us

Policies and ethics