Skip to main content

Intracellular Protein Trafficking

  • Chapter
Giardia
  • 2308 Accesses

Abstract

The secretory transport capacity of Giardia is perfectly adapted to its changing environment and is able to deploy essential protective surface coats as well as molecules, which act on host epithelia. The lumen-dwelling trophozoites take up nutrients by bulk endocytosis through peripheral vesicles or by receptor-mediated transport. Despite its versatility and fidelity, the giardial trafficking machinery appears to be the product of a general secondary reduction process that led to minimization of all components identified so far. Giardia is emerging as a model for the investigation of synthesis, transport, and assembly of highly effective biopolymers, a hallmark of all perorally transmitted protozoan and metazoan parasites. The cell biology of this simplified and highly derived organism allows unique insights into the function of minimal systems, which can be studied in an uncluttered cellular environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdul-Wahid A and Faubert GM (2004) Similarity in cyst wall protein (CWP) traffi cking between encysting Giardia duodenalis trophozoites and CWP-expressing human embryonic kidney-293 cells. Biochem Biophys Res Commun 324(3): 1069–1080

    Article  PubMed  CAS  Google Scholar 

  • Abodeely M, DuBois KN, et al. (2009) A contiguous compartment functions as endoplasmic reticulum and endosome/lysosome in Giardia lamblia. Eukaryot Cell 8(11): 1665–1676

    Article  PubMed  CAS  Google Scholar 

  • Ackers JP, Dhir V, et al. (2005) A bioinformatic analysis of the RAB genes of Trypanosoma brucei. Mol Biochem Parasitol 141(1): 89–97

    Article  PubMed  CAS  Google Scholar 

  • Adam RD, Aggarwal A, et al. (1988) Antigenic variation of a cysteine-rich protein in Giardia lamblia. J Exp Med 167(1): 109–118

    Article  PubMed  CAS  Google Scholar 

  • Banerjee S, Vishwanath P, et al. (2007) The evolution of Nglycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation. Proc Natl Acad Sci USA 104(28): 11676–11681

    Article  PubMed  CAS  Google Scholar 

  • Banerjee S, Cui J, et al. (2008) Use of Giardia, which appears to have a single nucleotide-sugar transporter for UDP-GlcNAc, to identify the UDP-Glc transporter of Entamoeba. Mol Biochem Parasitol 159(1): 44–53

    Article  PubMed  CAS  Google Scholar 

  • Benchimol M (2004) The release of secretory vesicle in encysting Giardia lamblia. FEMS Microbiol Lett 235(1): 81–87

    Article  PubMed  CAS  Google Scholar 

  • Bernander R, Palm JE, et al. (2001) Genome ploidy in different stages of the Giardia lamblia life cycle. Cell Microbiol 3(1): 55–62

    Article  PubMed  CAS  Google Scholar 

  • Bock JB, Matern HT, et al. (2001) A genomic perspective on membrane compartment organization. Nature 409(6822): 839–841

    Article  PubMed  CAS  Google Scholar 

  • Boucher SE and Gillin FD (1990) Excystation of in vitro-derived Giardia lamblia cysts. Infect Immun 58(11): 3516–3522

    PubMed  CAS  Google Scholar 

  • Bulik DA, van Ophem P, et al. (2000) UDP-N-acetylglucosamine pyrophosphorylase, a key enzyme in encysting Giardia, is allosterically regulated. J Biol Chem 275(19): 14722–14728

    Article  PubMed  CAS  Google Scholar 

  • Chin AC, Teoh DA, et al. (2002) Strain-dependent induction of enterocyte apoptosis by Giardia lamblia disrupts epithelial barrier function in a caspase-3-dependent manner. Infect Immun 70(7): 3673–3680

    Article  PubMed  CAS  Google Scholar 

  • Dacks JB and Doolittle WF (2002) Novel syntaxin gene sequences from Giardia, Trypanosoma and algae: implications for the ancient evolution of the eukaryotic endomembrane system. J Cell Sci 115(Pt 8): 1635–1642

    PubMed  CAS  Google Scholar 

  • Dacks JB and Doolittle WF (2004) Molecular and phylogenetic characterization of syntaxin genes from parasitic protozoa. Mol Biochem Parasitol 136(2): 123–136

    Article  PubMed  CAS  Google Scholar 

  • Dacks JB and Field MC (2007) Evolution of the eukaryotic membrane-traffi cking system: origin, tempo and mode. J Cell Sci 120(Pt 17): 2977–2985

    Article  PubMed  CAS  Google Scholar 

  • Dacks JB, Davis LA, et al. (2003) Evidence for Golgi bodies in proposed ‘Golgi-lacking’ lineages. Proc Biol Sci 270(Suppl 2): S168–S171

    Article  PubMed  Google Scholar 

  • Das S and Gillin FD (1996) Giardia lamblia: increased UDPN-acetyl-D-glucosamine and N-acetyl-D-galactosamine transferase activities during encystation. Exp Parasitol 83(1): 19–29

    Article  PubMed  CAS  Google Scholar 

  • Davids BJ, Mehta K, et al. (2004) Dependence of Giardia lamblia encystation on novel transglutaminase activity. Mol Biochem Parasitol 136(2): 173–180

    Article  PubMed  CAS  Google Scholar 

  • Davids BJ, Reiner DS, et al. (2006a) A new family of giardial cysteine-rich non-VSP protein genes and a novel cyst protein. PLoS One 1: e44

    Article  PubMed  CAS  Google Scholar 

  • Davids BJ, Palm JE, et al. (2006b) Polymeric immunoglobulin receptor in intestinal immune defense against the lumendwelling protozoan parasite Giardia. J Immunol 177(9): 6281–6290

    PubMed  CAS  Google Scholar 

  • de Carvalho TB, David EB, et al. (2008) Protease activity in extracellular products secreted in vitro by trophozoites of Giardia duodenalis. Parasitol Res 104(1): 185–190

    Article  PubMed  Google Scholar 

  • DuBois KN, Abodeely M, et al. (2008) Identifi cation of the major cysteine protease of Giardia and its role in encystation. J Biol Chem 283(26): 18024–18031

    Article  PubMed  CAS  Google Scholar 

  • Eckmann L, Laurent F, et al. (2000) Nitric oxide production by human intestinal epithelial cells and competition for arginine as potential determinants of host defense against the lumen-dwelling pathogen Giardia lamblia. J Immunol 164(3): 1478–1487

    PubMed  CAS  Google Scholar 

  • Elias EV, Quiroga R, et al. (2008) Characterization of SNAREs determines the absence of a typical Golgi apparatus in the ancient eukaryote Giardia lamblia. J Biol Chem 283(51): 35996–36010

    Article  PubMed  CAS  Google Scholar 

  • Feely DE and Dyer JK (1987) Localization of acid phosphatase activity in Giardia lamblia and Giardia muris trophozoites. J Protozool 34(1): 80–83

    PubMed  CAS  Google Scholar 

  • Feely DE, Holberton DV, and Erlandsen SL (1990) The biology of Giardia (E.A. Meyer, ed.). Elsevier Science Publishers, New York, pp 11–49

    Google Scholar 

  • Gaechter V, Schraner E, et al. (2008) The single dynamin family protein in the primitive protozoan Giardia lamblia is essential for stage conversion and endocytic transport. Traffic 9(1): 57–71

    Article  PubMed  CAS  Google Scholar 

  • Gerwig GJ, van Kuik JA, et al. (2002) The Giardia intestinalis fi lamentous cyst wall contains a novel beta(1–3)-N-acetyl-D-galactosamine polymer: a structural and conformational study. Glycobiology 12(8): 499–505

    Article  PubMed  CAS  Google Scholar 

  • Gillin FD, Reiner DS, et al. (1987) Encystation and expression of cyst antigens by Giardia lamblia in vitro. Science 235(4792): 1040–1043

    Article  PubMed  CAS  Google Scholar 

  • Gillin FD, Reiner DS, et al. (1991) Organelles of protein transport in Giardia lamblia. Parasitol Today 7(5): 113–116

    Article  PubMed  CAS  Google Scholar 

  • Gottig N, Elias EV, et al. (2006) Active and passive mechanisms drive secretory granule biogenesis during differentiation of the intestinal parasite Giardia lamblia. J Biol Chem 281(26): 18156–18166

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS, Aitken K, et al. (1994) Cloning of Giardia lamblia heat shock protein HSP70 homologs: implications regarding origin of eukaryotic cells and of endoplasmic reticulum. Proc Natl Acad Sci USA 91(8): 2895–2899

    Article  PubMed  CAS  Google Scholar 

  • Hehl AB and Marti M (2004) Secretory protein trafficking in Giardia intestinalis. Mol Microbiol 53(1): 19–28

    Article  PubMed  CAS  Google Scholar 

  • Hehl AB, Marti M, et al. (2000) Stage-specifi c expression and targeting of cyst wall protein-green fl uorescent protein chimeras in Giardia. Mol Biol Cell 11(5): 1789–1800

    PubMed  CAS  Google Scholar 

  • Hernandez Y, Castillo C, et al. (2007) Clathrin-dependent pathways and the cytoskeleton network are involved in ceramide endocytosis by a parasitic protozoan, Giardia lamblia. Int J Parasitol 37(1): 21–32

    Article  PubMed  CAS  Google Scholar 

  • Jarroll EL, Manning P, et al. (1989) Giardia cyst wall-specifi c carbohydrate: evidence for the presence of galactosamine. Mol Biochem Parasitol 32(2–3): 121–131

    Article  PubMed  CAS  Google Scholar 

  • Jimenez JC, Uzcanga G, et al. (2000) Identifi cation and partial characterization of excretory/secretory products with proteolytic activity in Giardia intestinalis. J Parasitol 86(4): 859–862

    PubMed  CAS  Google Scholar 

  • Jimenez JC, Morelle W, et al. (2007) Excreted/secreted glycoproteins of G. intestinalis play an essential role in the antibody response. Parasitol Res 100(4): 715–720

    Article  PubMed  CAS  Google Scholar 

  • Kasper LH, Bradley MS, et al. (1984) Identifi cation of stagespecific sporozoite antigens of Toxoplasma gondii by monoclonal antibodies. J Immunol 132(1): 443–449

    PubMed  CAS  Google Scholar 

  • Katelaris PH, Naeem A, et al. (1994) Activity of metronidazole, azithromycin and three benzimidazoles on Giardia lamblia growth and attachment to a human intestinal cell line. Aliment Pharmacol Ther 8(2): 187–192

    Article  PubMed  CAS  Google Scholar 

  • Keister DB (1983) Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 77(4): 487–488

    Article  PubMed  CAS  Google Scholar 

  • Kloepper TH, Kienle CN, et al. (2007) An elaborate classifi cation of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system. Mol Biol Cell 18(9): 3463–3471

    Article  PubMed  CAS  Google Scholar 

  • Knodler LA, Noiva R, et al. (1999) Novel protein-disulfi de isomerases from the early-diverging protist Giardia lamblia. J Biol Chem 274(42): 29805–29811

    Article  PubMed  CAS  Google Scholar 

  • Konrad C, Spycher C, et al. (2010) Selective condensation drives partitioning and sequential secretion of cyst wall proteins in differentiating Giardia lamblia. PLoS Pathog 6(4): e1000835

    Article  PubMed  CAS  Google Scholar 

  • Koumandou VL, Dacks JB, et al. (2007) Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evol Biol 7: 29

    Article  PubMed  CAS  Google Scholar 

  • Lal K, Field MC, et al. (2005) Identifi cation of a very large Rab GTPase family in the parasitic protozoan Trichomonas vaginalis. Mol Biochem Parasitol 143(2): 226–235

    Article  PubMed  CAS  Google Scholar 

  • Lanfredi-Rangel A, Attias M, et al. (1998) The peripheral vesicles of trophozoites of the primitive protozoan Giardia lamblia may correspond to early and late endosomes and to lysosomes. J Struct Biol 123(3): 225–235

    Article  PubMed  CAS  Google Scholar 

  • Lanfredi-Rangel A, Kattenbach WM, et al. (1999) Trophozoites of Giardia lamblia may have a Golgi-like structure. FEMS Microbiol Lett 181(2): 245–251

    Article  PubMed  CAS  Google Scholar 

  • Langford TD, Silberman JD, et al. (2002) Giardia lamblia: identifi cation and characterization of Rab and GDI proteins in a genome survey of the ER to Golgi endomembrane system. Exp Parasitol 101(1): 13–24

    Article  PubMed  CAS  Google Scholar 

  • Lee FJ, Moss J, et al. (1992) Human and Giardia ADP-ribosylation factors (ARFs) complement ARF function in Saccharomyces cerevisiae. J Biol Chem 267(34): 24441–24445

    PubMed  CAS  Google Scholar 

  • Li E, Zhao A, et al. (2007) Mast cell-mediated changes in smooth muscle contractility during mouse giardiasis. Infect Immun 75(9): 4514–4518

    Article  PubMed  CAS  Google Scholar 

  • Lindmark DG (1988) Giardia lamblia: localization of hydrolase activities in lysosome-like organelles of trophozoites. Exp Parasitol 65(1): 141–147

    Article  PubMed  CAS  Google Scholar 

  • Lujan HD, Marotta A, et al. (1995a) Developmental induction of Golgi structure and function in the primitive eukaryote Giardia lamblia. J Biol Chem 270(9): 4612–4618

    Article  PubMed  CAS  Google Scholar 

  • Lujan HD, Mowatt MR, et al. (1995b) Identifi cation of a novel Giardia lamblia cyst wall protein with leucine-rich repeats. Implications for secretory granule formation and protein assembly into the cyst wall. J Biol Chem 270(49): 29307–29313

    Article  PubMed  CAS  Google Scholar 

  • Lujan HD, Mowatt MR, et al. (1996a) Increased expression of the molecular chaperone BiP/GRP78 during the differentiation of a primitive eukaryote. Biol Cell 86(1): 11–18

    PubMed  CAS  Google Scholar 

  • Lujan HD, Mowatt MR, et al. (1996b) Cholesterol starvation induces differentiation of the intestinal parasite Giardia lamblia. Proc Natl Acad Sci USA 93(15): 7628–7633

    Article  PubMed  CAS  Google Scholar 

  • Macechko PT, Steimle PA, et al. (1992) Galactosamine-synthesizing enzymes are induced when Giardia encyst. Mol Biochem Parasitol 56(2): 301–309

    Article  PubMed  CAS  Google Scholar 

  • Marti M, Li Y, et al. (2002) Conformationally correct expression of membrane-anchored Toxoplasma gondii SAG1 in the primitive protozoan Giardia duodenalis. Infect Immun 70(2): 1014–1016

    Article  PubMed  CAS  Google Scholar 

  • Marti M, Li Y, et al. (2003a) The secretory apparatus of an ancient eukaryote: protein sorting to separate export pathways occurs before formation of transient Golgi-like compartments. Mol Biol Cell 14(4): 1433–1447

    Article  PubMed  CAS  Google Scholar 

  • Marti M, Regos A, et al. (2003b) An ancestral secretory apparatus in the protozoan parasite Giardia intestinalis. J Biol Chem 278(27): 24837–24848

    Article  PubMed  CAS  Google Scholar 

  • McCaffery JM and Gillin FD (1994) Giardia lamblia: ultrastructural basis of protein transport during growth and encystation. Exp Parasitol 79(3): 220–235

    Article  PubMed  CAS  Google Scholar 

  • Meyer EA (1994) Giardia as an organism. In: Giardia: from molecules to disease (R.C.A. Thompson, J.A. Reynoldson and A.J. Lynberg, eds.), CAB International, Wallingford, UK, pp 3–13

    Google Scholar 

  • Morelle W, Jimenez JC, et al. (2005) Characterization of the Nlinked glycans of Giardia intestinalis. Glycobiology 15(5): 549–559

    Article  PubMed  CAS  Google Scholar 

  • Morrison HG, McArthur AG, et al. (2007) Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317(5846): 1921–1926

    Article  PubMed  CAS  Google Scholar 

  • Mowatt MR, Lujan HD, et al. (1995) Developmentally regulated expression of a Giardia lamblia cyst wall protein gene. Mol Microbiol 15(5): 955–963

    Article  PubMed  CAS  Google Scholar 

  • Muller J, Sterk M, et al. (2007) Characterization of Giardia lamblia WB C6 clones resistant to nitazoxanide and to metronidazole. J Antimicrob Chemother 60(2): 280–287

    Article  PubMed  CAS  Google Scholar 

  • Murtagh JJ Jr, Mowatt MR, et al. (1992) Guanine nucleotidebinding proteins in the intestinal parasite Giardia lamblia. Isolation of a gene encoding an approximately 20-kDa ADP-ribosylation factor. J Biol Chem 267(14): 9654–9662

    PubMed  CAS  Google Scholar 

  • Palm JE, Weiland ME, et al. (2003) Identifi cation of immunoreactive proteins during acute human giardiasis. J Infect Dis 187(12): 1849–1859

    Article  PubMed  CAS  Google Scholar 

  • Panaro MA, Cianciulli A, et al. (2007) Caspase-dependent apoptosis of the HCT-8 epithelial cell line induced by the parasite Giardia intestinalis. FEMS Immunol Med Microbiol 51(2): 302–309

    Article  PubMed  CAS  Google Scholar 

  • Papanastasiou P, Hiltpold A, et al. (1996) The release of the variant surface protein of Giardia to its soluble isoform is mediated by the selective cleavage of the conserved carboxy-terminal domain. Biochemistry 35(31): 10143–10148

    Article  PubMed  CAS  Google Scholar 

  • Papanastasiou P, McConville MJ, et al. (1997) The variant-specifi c surface protein of Giardia, VSP4A1, is a glycosylated and palmitoylated protein. Biochem J 322(Pt 1): 49–56

    PubMed  CAS  Google Scholar 

  • Ratner DM, Cui J, et al. (2008) Changes in the N-glycome, glycoproteins with Asn-linked glycans, of Giardia lamblia with differentiation from trophozoites to cysts. Eukaryot Cell 7(11): 1930–1940

    Article  PubMed  CAS  Google Scholar 

  • Reiner DS, Douglas H, et al. (1989) Identifi cation and localization of cyst-specifi c antigens of Giardia lamblia. Infect Immun 57(3): 963–968

    PubMed  CAS  Google Scholar 

  • Reiner DS, McCaffery M, et al. (1990) Sorting of cyst wall proteins to a regulated secretory pathway during differentiation of the primitive eukaryote, Giardia lamblia. Eur J Cell Biol 53(1): 142–153

    PubMed  CAS  Google Scholar 

  • Ringqvist E, Palm JE, et al. (2008) Release of metabolic enzymes by Giardia in response to interaction with intestinal epithelial cells. Mol Biochem Parasitol 159(2): 85–91

    Article  PubMed  CAS  Google Scholar 

  • Rivero MR, Vranych CV, et al. (2010) Adaptor Protein 2 regulates receptor-mediated endocytosis and cyst formation in Giardia lamblia. Biochem J 428(1): 33–45

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Fuentes GB, Cedillo-Rivera R, et al. (2006) Giardia duodenalis: analysis of secreted proteases upon trophozoite-epithelial cell interaction in vitro. Mem Inst Oswaldo Cruz 101(6): 693–696

    Article  PubMed  Google Scholar 

  • Roxstrom-Lindquist K, Ringqvist E, et al. (2005) Giardia lamblia-induced changes in gene expression in differentiated Caco-2 human intestinal epithelial cells. Infect Immun 73(12): 8204–8208

    Article  PubMed  CAS  Google Scholar 

  • Saito-Nakano Y, Loftus BJ, et al. (2005) The diversity of Rab GTPases in Entamoeba histolytica. Exp Parasitol 110(3): 244–252

    Article  PubMed  CAS  Google Scholar 

  • Samra HK, Ganguly NK, et al. (1988) Effect of excretorysecretory products of Giardia lamblia on glucose and phenylalanine transport in the small intestine of Swiss albino mice. Biochem Int 17(5): 801–812

    PubMed  CAS  Google Scholar 

  • Samuelson J, Banerjee S, et al. (2005) The diversity of dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of sets of glycosyltransferases. Proc Natl Acad Sci USA 102(5): 1548–1553

    Article  PubMed  CAS  Google Scholar 

  • Schledzewski K, Brinkmann H, et al. (1999) Phylogenetic analysis of components of the eukaryotic vesicle transport system reveals a common origin of adaptor protein complexes 1, 2, and 3 and the F subcomplex of the coatomer COPI. J Mol Evol 48(6): 770–778

    Article  PubMed  CAS  Google Scholar 

  • Sheffield HG and Bjorvat B (1977) Ultrastructure of the cyst of Giardia lamblia. Am J Trop Med Hyg 26(1): 23–30

    PubMed  CAS  Google Scholar 

  • Slavin I, Saura A, et al. (2002) Dephosphorylation of cyst wall proteins by a secreted lysosomal acid phosphatase is essential for excystation of Giardia lamblia. Mol Biochem Parasitol 122(1): 95–98

    Article  PubMed  CAS  Google Scholar 

  • Smith PD, Gillin FD, et al. (1982) Chronic giardiasis: studies on drug sensitivity, toxin production, and host immune response. Gastroenterology 83(4): 797–803

    PubMed  CAS  Google Scholar 

  • Soltys BJ, Falah M, et al. (1996) Identifi cation of endoplasmic reticulum in the primitive eukaryote Giardia lamblia using cryoelectron microscopy and antibody to Bip. J Cell Sci 109(Pt 7): 1909–1917

    PubMed  CAS  Google Scholar 

  • Stefanic S, Morf L, et al. (2009) Neogenesis and maturation of transient Golgi-like cisternae in a simple eukaryote. J Cell Sci 122(Pt 16): 2846–2856

    Article  PubMed  CAS  Google Scholar 

  • Stefanic S, Palm D, et al. (2006) Organelle proteomics reveals cargo maturation mechanisms associated with Golgi-like encystation vesicles in the early-diverged protozoan Giardia lamblia. J Biol Chem 281(11): 7595–7604

    Article  PubMed  CAS  Google Scholar 

  • Sun CH, McCaffery JM, et al. (2003) Mining the Giardia lamblia genome for new cyst wall proteins. J Biol Chem 278(24): 21701–21708

    Article  PubMed  CAS  Google Scholar 

  • Svard SG, Rafferty C, et al. (1999) A signal recognition particle receptor gene from the early-diverging eukaryote, Giardia lamblia. Mol Biochem Parasitol 98(2): 253–264

    Article  PubMed  CAS  Google Scholar 

  • Tai JH, Ong SJ, et al. (1993) Giardia virus enters Giardia lamblia WB trophozoite via endocytosis. Exp Parasitol 76(2): 165–174

    Article  PubMed  CAS  Google Scholar 

  • Teoh DA, Kamieniecki D, et al. (2000) Giardia lamblia rearranges F-actin and alpha-actinin in human colonic and duodenal monolayers and reduces transepithelial electrical resistance. J Parasitol 86(4): 800–806

    PubMed  CAS  Google Scholar 

  • Thirion J, Wattiaux R, et al. (2003) The acid phosphatase positive organelles of the Giardia lamblia trophozoite contain a membrane bound cathepsin C activity. Biol Cell 95(2): 99–105

    Article  PubMed  CAS  Google Scholar 

  • Tomavo S, Dubremetz JF, et al. (1992) A family of glycolipids from Toxoplasma gondii. Identifi cation of candidate glycolipid precursor(s) for Toxoplasma gondii glycosylphosphatidylinositol membrane anchors. J Biol Chem 267(17): 11721–11728

    PubMed  CAS  Google Scholar 

  • Touz MC, Gottig N, et al. (2002a) Identifi cation and characterization of a novel secretory granule calcium-binding protein from the early branching eukaryote Giardia lamblia. J Biol Chem 277(52): 50557–50563

    Article  PubMed  CAS  Google Scholar 

  • Touz MC, Nores MJ, et al. (2002b) The activity of a developmentally regulated cysteine proteinase is required for cyst wall formation in the primitive eukaryote Giardia lamblia. J Biol Chem 277(10): 8474–8481

    Article  PubMed  CAS  Google Scholar 

  • Touz MC, Lujan HD, et al. (2003) Sorting of encystation-specifi c cysteine protease to lysosome-like peripheral vacuoles in Giardia lamblia requires a conserved tyrosine-based motif. J Biol Chem 278(8): 6420–6426

    Article  PubMed  CAS  Google Scholar 

  • Touz MC, Kulakova L, et al. (2004) Adaptor protein complex 1 mediates the transport of lysosomal proteins from a Golgilike organelle to peripheral vacuoles in the primitive eukaryote Giardia lamblia. Mol Biol Cell 15(7): 3053–3060

    Article  PubMed  CAS  Google Scholar 

  • Touz MC, Conrad JT, et al. (2005) A novel palmitoyl acyl transferase controls surface protein palmitoylation and cytotoxicity in Giardia lamblia. Mol Microbiol 58(4): 999–1011

    Article  PubMed  CAS  Google Scholar 

  • Touz MC, Ropolo AS, et al. (2008) Arginine deiminase has multiple regulatory roles in the biology of Giardia lamblia. J Cell Sci 121(Pt 17): 2930–2938

    Article  PubMed  CAS  Google Scholar 

  • Tovar J, Leon-Avila G, et al. (2003) Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426(6963): 172–176

    Article  PubMed  CAS  Google Scholar 

  • Troeger H, Epple HJ, et al. (2007) Effect of chronic Giardia lamblia infection on epithelial transport and barrier function in human duodenum. Gut 56(3): 328–335

    Article  PubMed  CAS  Google Scholar 

  • Van Keulen H, Steimle PA, et al. (1998) Cloning of two putative Giardia lamblia glucosamine 6-phosphate isomerase genes only one of which is transcriptionally activated during encystment. J Eukaryot Microbiol 45(6): 637–642

    Article  PubMed  Google Scholar 

  • Ward W, Alvarado L, et al. (1997) A primitive enzyme for a primitive cell: the protease required for excystation of Giardia. Cell 89(3): 437–444

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Hehl, A.B. (2011). Intracellular Protein Trafficking. In: Luján, H.D., Svärd, S. (eds) Giardia. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0198-8_14

Download citation

Publish with us

Policies and ethics