Skip to main content

Cell Cycle Regulation and Cell Division in Giardia

  • Chapter
Giardia

Abstract

Cell division is a fundamental area of giardial cell biology and pathogenesis that is likely amenable to antiparasitic drugs. The giardial life cycle is characterized by a binucleate swimming trophozoite stage that colonizes the small intestine by undergoing rapid cell division and attachment, and a presumably dormant cyst stage that persists in the environment. Genome replication and cell division occur during the trophozoite stage, and again prior to encystation, although the details of cytoskeletal rearrangements during encystation/excystation remain unclear. During cell division in trophozoites, the two diploid nuclei first undergo mitosis and later the eight flagella and ventral disc are duplicated and partitioned into two daughter cells. Giardia trophozoites possess a semi-open mitosis with two extranuclear spindles which access chromatin through polar openings in the nuclear membranes. The two nuclei migrate to the cell midline in prophase with lateral chromosome segregation in the left-right axis and cytokinesis along the longitudinal plane (perpendicular to the spindles). This ensures that each daughter inherits one copy of each parental nucleus with mirror image symmetry. Before the completion of mitosis, the daughter flagella undergo a maturation process in which the parent flagella migrate and transform to different flagellar types and new flagella are built. During encystation, the flagella are internalized within the cyst, but do not completely resorb. Daughter discs are formed de novo, and likely are neither templated nor built from components of the parental disc. The two new daughter discs are assembled on the dorsal side of the cell in late telophase, and the parental disc is reorganized and disassembled, presumably to maintain attachment during division. The processes of mitosis, flagellar division, and disc division have only recently been investigated at the molecular and cellular levels, but each likely involves microtubule motors such as kinesins and dyneins to generate forces for repositioning of organelles during cell division.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam RD (2000) The Giardia lamblia genome. Int J Parasitol 30(4): 475–484

    Article  PubMed  CAS  Google Scholar 

  • Akhmanova A and Hoogenraad CC (2005) Microtubule plus-end-tracking proteins: mechanisms and functions. Curr Opin Cell Biol 17(1): 47–54

    Article  PubMed  CAS  Google Scholar 

  • Amin-Hanjani S and Wadsworth P (1991) Inhibition of spindle elongation by taxol. Cell Motil Cytoskeleton 20(2): 136–144

    Article  PubMed  CAS  Google Scholar 

  • Asakawa K, Toya M, et al. (2005) Mal3, the fission yeast EB1 homologue, cooperates with Bub1 spindle checkpoint to prevent monopolar attachment. EMBO Rep 6(12): 1194–1200

    Article  PubMed  CAS  Google Scholar 

  • Azimzadeh J and Bornens M (2007) Structure and duplication of the centrosome. J Cell Sci 120(Pt 13): 2139–2142

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian MK, Bi E, et al. (2004) Comparative analysis of cytokinesis in budding yeast, fission yeast and animal cells. Curr Biol 14(18): R806–R818

    Article  PubMed  CAS  Google Scholar 

  • Barr FA and Gruneberg U (2007) Cytokinesis: placing and making the final cut. Cell 131(5): 847–860

    Article  PubMed  CAS  Google Scholar 

  • Baruch AC, Isaac-Renton J, et al. (1996) The molecular epidemiology of Giardia lamblia: a sequence-based approach. J Infect Dis 174(1): 233–236

    Article  PubMed  CAS  Google Scholar 

  • Bauer B, Engelbrecht S, et al. (1999) Functional identification of alpha 1-giardin as an annexin of Giardia lamblia. FEMS Microbiol Lett 173(1): 147–153

    PubMed  CAS  Google Scholar 

  • Belhadri A (1995) Presence of centrin in the human parasite Giardia: a further indication of its ubiquity in eukaryotes. Biochem Biophys Res Commun 214(2): 597–601

    Article  PubMed  CAS  Google Scholar 

  • Benchimol M (2004a) Mitosis in Giardia lamblia: multiple modes of cytokinesis. Protist 155(1): 33–44

    Article  PubMed  Google Scholar 

  • Benchimol M (2004b) Participation of the adhesive disc during karyokinesis in Giardia lamblia. Biol Cell 96(4): 291–301

    PubMed  Google Scholar 

  • Bernander R, Palm JE, et al. (2001) Genome ploidy in different stages of the Giardia lamblia life cycle. Cell Microbiol 3(1): 55–62

    Article  PubMed  CAS  Google Scholar 

  • Brugerolle G (1974) Contribution Ă  l’étude cytologique et phylĂ©tique des diplozoaires (Zoomastigophorea, Diplozoa, Dangeard 1910). III. Etude ultrastructurale du genre Hexamita (Dujardin 1838). Protistogica 10: 83–90

    Google Scholar 

  • Brugerolle G (1991) Flagellar and cytoskeletal systems in amitochondrial flagellates: Archamoeba, Metamonada and Parabasala. Protoplasma 164: 70–90.

    Article  Google Scholar 

  • Brugerolle G and Mignot JP (2003) The rhizoplast of chrysomonads, a basal body-nucleus connector that polarises the dividing spindle. Protoplasma 222(1–2): 13–21

    Article  PubMed  CAS  Google Scholar 

  • Campanati L, Bre MH, et al. (1999) Expression of tubulin polyglycylation in Giardia lamblia. Biol Cell 91(7): 499–506

    Article  PubMed  CAS  Google Scholar 

  • Castillo-Romero A, Leon-Avila G, et al. (2009) Participation of actin on Giardia lamblia growth and encystation. PLoS One 4(9): e7156

    Article  PubMed  CAS  Google Scholar 

  • Cerva L and Nohynkova E (1992) A light microscopic study of the course of cellular division of Giardia intestinalis trophozoites grown in vitro. Folia Parasitol (Praha) 39(2): 97–104

    CAS  Google Scholar 

  • Correa G and Benchimol M (2006) Giardia lamblia behavior under cytochalasins treatment. Parasitol Res 98(3): 250–256

    Article  PubMed  Google Scholar 

  • Correa G, Morgado-Diaz JA, et al. (2004) Centrin in Giardia lamblia — ultrastructural localization. FEMS Microbiol Lett 233(1): 91–96

    Article  PubMed  CAS  Google Scholar 

  • Crossley R and Holberton DV (1983) Characterization of proteins from the cytoskeleton of Giardia lamblia. J Cell Sci 59: 81–103

    PubMed  CAS  Google Scholar 

  • Crossley R and Holberton DV (1985) Assembly of 2.5 nm filaments from giardin, a protein associated with cytoskeletal microtubules in Giardia. J Cell Sci 78: 205–231

    PubMed  CAS  Google Scholar 

  • Crossley R, Marshall J, et al. (1986) Immunocytochemical differentiation of microtubules in the cytoskeleton of Giardia lamblia using monoclonal antibodies to alpha-tubulin and polyclonal antibodies to associated low molecular weight proteins. J Cell Sci 80: 233–252

    PubMed  CAS  Google Scholar 

  • Davids BJ, Williams S, et al. (2008) Giardia lamblia aurora kinase: a regulator of mitosis in a binucleate parasite. Int J Parasitol 38(3–4): 353–369

    Article  PubMed  CAS  Google Scholar 

  • Dawe HR, Smith UM, et al. (2007) The Meckel-Gruber Syndrome proteins MKS1 and meckelin interact and are required for primary cilium formation. Hum Mol Genet 16(2): 173–186

    Article  PubMed  CAS  Google Scholar 

  • Dawson SC and House SA (2010) Life with eight flagella: flagellar assembly and division in Giardia. Curr Opin Microbiol 13(4): 480–490

    Article  PubMed  CAS  Google Scholar 

  • Dawson SC, Sagolla MS, et al. (2007a). The cenH3 histone variant defines centromeres in Giardia intestinalis. Chromosoma 116(2): 175–184.

    Article  PubMed  CAS  Google Scholar 

  • Dawson SC, Sagolla MS, et al. (2007b) Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis. Eukaryot Cell 6(12): 2354–2364

    Article  PubMed  CAS  Google Scholar 

  • De Brabander M, Geuens G, et al. (1986) Microtubule dynamics during the cell cycle: the effects of taxol and nocodazole on the microtubule system of Pt K2 cells at different stages of the mitotic cycle. Int Rev Cytol 101: 215–274

    Article  PubMed  Google Scholar 

  • Dernburg AF (2001) Here, there, and everywhere: kinetochore function on holocentric chromosomes. J Cell Biol 153(6): F33–38

    Article  PubMed  CAS  Google Scholar 

  • Elmendorf HG, Dawson SC, et al. (2003) The cytoskeleton of Giardia lamblia. Int J Parasitol 33(1): 3–28

    Article  PubMed  Google Scholar 

  • Erlandsen SL and Rasch EM (1994) The DNA content of trophozoites and cysts of Giardia lamblia by microdensitometric quantitation of Feulgen staining and examination by laser scanning confocal microscopy. J Histochem Cytochem 42(11): 1413–1416

    Article  PubMed  CAS  Google Scholar 

  • Erlandsen SL, Russo AP, et al. (2004) Evidence for adhesive activity of the ventrolateral flange in Giardia lamblia. J Eukaryot Microbiol 51(1): 73–80

    Article  PubMed  Google Scholar 

  • Feely DE (1988) Morphology of the cyst of Giardia microti by light and electron microscopy. J Protozool 35(1): 52–54

    PubMed  CAS  Google Scholar 

  • Feely DE, Schollmeyer JV, et al. (1982) Giardia spp.: distribution of contractile proteins in the attachment organelle. Exp Parasitol 53(1): 145–154

    Article  PubMed  CAS  Google Scholar 

  • Feely DE and Erlandsen SL (1990) The biology of Giardia. In: (E.A. Mayer, ed.) Giardiasis, vol. 3. Elsevier, Amsterdam and New York, pp 11–49

    Google Scholar 

  • Feldman JL, Geimer S, et al. (2007) The mother centriole plays an instructive role in defining cell geometry. PLoS Biol 5(6): e149

    Article  PubMed  CAS  Google Scholar 

  • Filice FP (1952) Studies on the cytology and life history of a Giardia from the laboratory rat, vol. 57. University of California Publ. Zool. pp 53–146

    Google Scholar 

  • Franzen O, Jerlstrom-Hultqvist J, et al. (2009) Draft genome sequencing of Giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species? PLoS Pathog 5(8): e1000560

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Frisardi M, et al. (2001) How Giardia swim and divide. Infect Immun 69(12): 7866–7872

    Article  PubMed  CAS  Google Scholar 

  • Hamaguchi Y, Toriyama M, et al. (1987) Redistribution of fluorescently labeled tubulin in the mitotic apparatus of sand dollar eggs and the effects of taxol. Cell Struct Funct 12(1): 43–52

    Article  PubMed  CAS  Google Scholar 

  • Hammarton TC, Monnerat S, et al. (2007) Cytokinesis in trypanosomatids. Curr Opin Microbiol 10(6): 520–527

    Article  PubMed  CAS  Google Scholar 

  • Hammond JW, Cai D, et al. (2008) Tubulin modifications and their cellular functions. Curr Opin Cell Biol 20(1): 71–76

    Article  PubMed  CAS  Google Scholar 

  • Heimann K, Reize IB, et al. (1989) The flagellar developmental cycle in algae: flagellar transformation in Cyanophora paradoxa (Glaucocytophyceae). Protoplasma 148:106–110

    Article  Google Scholar 

  • Henderson KA and Gottschling DE (2008) A mother’s sacrifice: what is she keeping for herself? Curr Opin Cell Biol 20(6): 723–728

    Article  PubMed  CAS  Google Scholar 

  • Hodges ME, Scheumann N, et al. (2010) Reconstructing the evolutionary history of the centriole from protein components. J Cell Sci 123(Pt 9): 1407–1413

    Article  PubMed  CAS  Google Scholar 

  • Hoeng JC, Dawson SC, et al. (2008) High-resolution crystal structure and in vivo function of a kinesin-2 homologue in Giardia intestinalis. Mol Biol Cell 19(7): 3124–3137

    Article  PubMed  CAS  Google Scholar 

  • Hofstetrova K, Uzlikova M, et al. (2010) Giardia intestinalis: aphidicolin influence on the trophozoite cell cycle. Exp Parasitol 124(2): 159–166

    Article  PubMed  CAS  Google Scholar 

  • Holberton DV (1981) Arrangement of subunits in microribbons from Giardia. J Cell Sci 47: 167–185

    PubMed  CAS  Google Scholar 

  • Holberton DV and Ward AP (1981) Isolation of the cytoskeleton from Giardia. Tubulin and a low-molecular-weight protein associated with microribbon structures. J Cell Sci 47: 139–166

    PubMed  CAS  Google Scholar 

  • Iftode F, Clerot JC, et al. (2000) Tubulin polyglycylation: a morphogenetic marker in ciliates. Biol Cell 92(8–9): 615–628

    Article  PubMed  CAS  Google Scholar 

  • Janson ME and Dogterom M (2004) Scaling of microtubule force-velocity curves obtained at different tubulin concentrations. Phys Rev Lett 92(24): 248101

    Article  PubMed  CAS  Google Scholar 

  • Jerlstrom-Hultqvist J, Franzen O, et al. (2010) Genome analysis and comparative genomics of a Giardia intestinalis assemblage E isolate. BMC Genomics 11: 543

    Article  PubMed  CAS  Google Scholar 

  • Jordan MA, Toso RJ, et al. (1993) Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci U S A 90(20): 9552–9556

    Article  PubMed  CAS  Google Scholar 

  • Kabnick KS and Peattie DA (1990) In situ analyses reveal that the two nuclei of Giardia lamblia are equivalent. J Cell Sci 95(Pt 3): 353–360

    PubMed  Google Scholar 

  • Kues U (2000) Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol Mol Biol Rev 64(2): 316–353

    Article  PubMed  CAS  Google Scholar 

  • Kulda J and Nohynkova E (1995) Giardia in humans and animals. In: (J.P. Kreier, ed.) Parasitic Protozoa, vol.10. Academic Press Inc. San Diego, pp 225–423

    Google Scholar 

  • Lauwaet T, Davids BJ, et al. (2007) Protein phosphatase 2A plays a crucial role in Giardia lamblia differentiation. Mol Biochem Parasitol 152(1): 80–89

    Article  PubMed  CAS  Google Scholar 

  • Lavier G (1939) Le mode de division des forms vĂ©gĂ©tatives dans le genre Giardia. C R Soc Biol 132(452–455)

    Google Scholar 

  • Li D, Craik SA, et al. (2008) Survival of Giardia lamblia trophozoites after exposure to UV light. FEMS Microbiol Lett 278(1): 56–61

    Article  PubMed  CAS  Google Scholar 

  • Loncarek J and Khodjakov A (2009) Ab ovo or de novo? Mechanisms of centriole duplication. Mol Cells 27(2): 135–142

    Article  PubMed  CAS  Google Scholar 

  • Lu SQ, Baruch AC, et al. (1998) Molecular comparison of Giardia lamblia isolates. Int J Parasitol 28(9): 1341–1345

    Article  PubMed  CAS  Google Scholar 

  • Macara IG and Mili S (2008) Polarity and differential inheritance — Universal attributes of life? Cell 135(5): 801–812

    Article  PubMed  CAS  Google Scholar 

  • Maddox PS, Oegema K, et al. (2004) Haloer than thou: chromosome segregation and kinetochore function in C. elegans. Chromosome Res 12(6): 641–653

    Article  PubMed  CAS  Google Scholar 

  • Malik HS and Henikoff S (2003) Phylogenomics of the nucleosome. Nat Struct Biol 10(11): 882–891

    Article  PubMed  CAS  Google Scholar 

  • Marshall WF and Rosenbaum JL (2000) How centrioles work: lessons from green yeast. Curr Opin Cell Biol 12(1): 119–125

    Article  PubMed  CAS  Google Scholar 

  • McDonald KL, O’Toole ET, et al. (1992) Kinetochore microtubules in PTK cells. J Cell Biol 118(2): 369–383

    Article  PubMed  CAS  Google Scholar 

  • Melkonian M, Reize IB and Preisig HR (1987) Maturation of a flagellum/basal body requires more than one cell cycle in algal flagellates: studies on Nephroselmis olivacea (Prasinoohyceae). Springer-Verlag, Berlin

    Google Scholar 

  • Meng TC, Aley SB, et al. (1996) Immunolocalization and sequence of caltractin/centrin from the early branching eukaryote Giardia lamblia. Mol Biochem Parasitol 79(1): 103–108

    Article  PubMed  CAS  Google Scholar 

  • Midlej V and Benchimol M (2009) Giardia lamblia behavior during encystment: how morphological changes in shape occur. Parasitol Int 58(1): 72–80

    Article  PubMed  Google Scholar 

  • Moestrup O (2000) The flagellate cytoskeleton, introduction of a general terminology for microtubular flagellar roots in protests. Taylor and Francis, London

    Google Scholar 

  • Morrison HG, McArthur AG, et al. (2007) Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317(5846): 1921–1926

    Article  PubMed  CAS  Google Scholar 

  • Nohynkova E, Draber P, et al. (2000) Localization of gammatubulin in interphase and mitotic cells of a unicellular eukaryote, Giardia intestinalis. Eur J Cell Biol 79(6): 438–445

    Article  PubMed  CAS  Google Scholar 

  • Nohynkova E, Tumova P, et al. (2006) Cell division of Giardia intestinalis: flagellar developmental cycle involves transformation and exchange of flagella between mastigonts of a diplomonad cell. Eukaryot Cell 5(4): 753–761

    Article  PubMed  CAS  Google Scholar 

  • O’Toole ET, Giddings TH, et al. (2003) Three-dimensional organization of basal bodies from wild-type and delta-tubulin deletion strains of Chlamydomonas reinhardtii. Mol Biol Cell 14(7): 2999–3012

    Article  CAS  Google Scholar 

  • Ogbadoyi E, Ersfeld K, et al. (2000) Architecture of the Trypanosoma brucei nucleus during interphase and mitosis. Chromosoma 108(8): 501–513

    Article  PubMed  CAS  Google Scholar 

  • Palm D, Weiland M, et al. (2005) Developmental changes in the adhesive disk during Giardia differentiation. Mol Biochem Parasitol 141(2): 199–207

    Article  PubMed  CAS  Google Scholar 

  • Pazour GJ and Rosenbaum JL (2002) Intraflagellar transport and cilia-dependent diseases. Trends Cell Biol 12(12): 551–555

    Article  PubMed  CAS  Google Scholar 

  • Pellegrin S and Mellor H (2005). The Rho family GTPase Rif induces filopodia through mDia2. Curr Biol 15(2): 129–133

    Article  PubMed  CAS  Google Scholar 

  • Poxleitner MK, Carpenter ML, et al. (2008) Evidence for karyogamy and exchange of genetic material in the binucleate intestinal parasite Giardia intestinalis. Science 319(5869): 1530–1533

    Article  PubMed  CAS  Google Scholar 

  • Raikov IB (1994) The diversity of forms of mitosis in protozoa: a comparative review. Eur J Protistol 30(3): 252–269

    Article  Google Scholar 

  • Ramesh MA, Malik SB, et al. (2005) A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr Biol 15(2): 185–191

    PubMed  CAS  Google Scholar 

  • Rasi MQ, Parker JD, et al. (2009) Katanin knockdown supports a role for microtubule severing in release of basal bodies before mitosis in Chlamydomonas. Mol Biol Cell 20(1): 379–388

    Article  PubMed  CAS  Google Scholar 

  • Reiner DS, Ankarklev J, et al. (2008) Synchronisation of Giardia lamblia: identification of cell cycle stage-specific genes and a differentiation restriction point. Int J Parasitol 38(8–9): 935–944

    Article  PubMed  CAS  Google Scholar 

  • Sagolla, MS, Dawson SC, et al. (2006) Three-dimensional analysis of mitosis and cytokinesis in the binucleate parasite Giardia intestinalis. J Cell Sci 119(Pt 23): 4889–4900

    Article  PubMed  CAS  Google Scholar 

  • Salisbury JL (1995) Centrin, centrosomes, and mitotic spindle poles. Curr Opin Cell Biol 7(1): 39–45

    Article  PubMed  CAS  Google Scholar 

  • Salisbury JL, Baron AT, et al. (1988) The centrin-based cytoskeleton of Chlamydomonas reinhardtii: distribution in interphase and mitotic cells. J Cell Biol 107(2): 635–641

    Article  PubMed  CAS  Google Scholar 

  • Schuster FL (1975) Ultrastructure of mitosis in the amoeboflagellate Naegleria gruberi. Tissue Cell 7(1): 1–11

    Article  PubMed  CAS  Google Scholar 

  • Snyder JA and Mullins JM (1993) Analysis of spindle microtubule organization in untreated and taxol-treated PtK1 cells. Cell Biol Int 17(12): 1075–1084

    Article  PubMed  CAS  Google Scholar 

  • Solari AJ, Rahn MI, et al. (2003) A unique mechanism of nuclear division in Giardia lamblia involves components of the ventral disk and the nuclear envelope. Biocell 27(3): 329–346

    PubMed  Google Scholar 

  • Soloviev MM (1963) Study on division of Lamblia duodenalis in culture. Med Parazitol (Moscow) 1: 96–101

    Google Scholar 

  • Soltys BJ and Gupta RS (1994) Immunoelectron microscopy of Giardia lamblia cytoskeleton using antibody to acetylated alpha-tubulin. J Eukaryot Microbiol 41(6): 625–632

    Article  PubMed  CAS  Google Scholar 

  • Sonda S, Stefanic S, et al. (2008) A sphingolipid inhibitor induces a cytokinesis arrest and blocks stage differentiation in Giardia lamblia. Antimicrob Agents Chemother 52(2): 563–569

    Article  PubMed  CAS  Google Scholar 

  • Starr DA (2009) A nuclear-envelope bridge positions nuclei and moves chromosomes. J Cell Sci 122(Pt 5): 577–586

    Article  PubMed  CAS  Google Scholar 

  • Tsou MF and Stearns T (2006) Controlling centrosome number: licenses and blocks. Curr Opin Cell Biol 18(1): 74–78

    Article  PubMed  CAS  Google Scholar 

  • Tumova P, Hofstetrova K, et al. (2007a) Cytogenetic evidence for diversity of two nuclei within a single diplomonad cell of Giardia. Chromosoma 116(1): 65–78

    Article  PubMed  Google Scholar 

  • Tumova P, Kulda J, et al. (2007b) Cell division of Giardia intestinalis: assembly and disassembly of the adhesive disc, and the cytokinesis. Cell Motil Cytoskeleton 64(4): 288–298

    Article  PubMed  Google Scholar 

  • Uyeda TQ and Nagasaki A (2004) Variations on a theme: the many modes of cytokinesis. Curr Opin Cell Biol 16(1): 55–60

    Article  PubMed  CAS  Google Scholar 

  • Van Hooser AA, Ouspenski II, et al. (2001) Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J Cell Sci 114(Pt 19): 3529–3542

    PubMed  Google Scholar 

  • Vaugham S and Dawe HR (2011) Common themes in centriole and centrosome movements. Trends Cell Biol (in press).

    Google Scholar 

  • Walczak CE and Mitchison TJ (1996) Kinesin-related proteins at mitotic spindle poles: function and regulation. Cell 85(7): 943–946

    Article  PubMed  CAS  Google Scholar 

  • Weber K, Schneider A, et al. (1997) Posttranslational modifications of alpha-and beta-tubulin in Giardia lamblia, an ancient eukaryote. FEBS Lett 419(1): 87–91

    Article  PubMed  CAS  Google Scholar 

  • Weiland ME, McArthur AG, et al. (2005) Annexin-like alpha giardins: a new cytoskeletal gene family in Giardia lamblia. Int J Parasitol 35(6): 617–626

    Article  PubMed  CAS  Google Scholar 

  • Wilkins AS and Holliday R (2009) The evolution of meiosis from mitosis. Genetics 181(1): 3–12

    Article  PubMed  Google Scholar 

  • Winey M, Mamay CL, et al. (1995) Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J Cell Biol 129(6): 1601–1615

    Article  PubMed  CAS  Google Scholar 

  • Wloga D, Webster DM, et al. (2009) TTLL3 is a tubulin glycine ligase that regulates the assembly of cilia. Dev Cell 16(6): 867–876

    Article  PubMed  CAS  Google Scholar 

  • Wright RL, Salisbury J, et al. (1985) A nucleus-basal body connector in Chlamydomonas reinhardtii that may function in basal body localization or segregation. J Cell Biol 101(5 Pt 1): 1903–1912

    Article  PubMed  CAS  Google Scholar 

  • Wright RL, Adler SA, et al. (1989) Nucleus-basal body connector in Chlamydomonas: evidence for a role in basal body segregation and against essential roles in mitosis or in determining cell polarity. Cell Motil Cytoskeleton 14(4): 516–526

    Article  PubMed  CAS  Google Scholar 

  • Yeong FM, Lim HH, et al. (2002) MEN, destruction and separation: mechanistic links between mitotic exit and cytokinesis in budding yeast. Bioessays 24(7): 659–666

    Article  PubMed  CAS  Google Scholar 

  • Yu LZ, Birky Jr C, et al. (2002) The two nuclei of Giardia each have complete copies of the genome and are partitioned equationally at cytokinesis. Eukaryot Cell 1(2): 191–199

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Dawson, S.C., Nohýnková, E., Cipriano, M. (2011). Cell Cycle Regulation and Cell Division in Giardia . In: Luján, H.D., Svärd, S. (eds) Giardia. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0198-8_10

Download citation

Publish with us

Policies and ethics