H. Andréka, P. Burmeister, and I. Németi. Quasivarieties of partial algebras — a unifying approach towards a two-valued model theory for partial algebras. Studia Sci. Math. Hungar. 16, 1981, pp. 325–372.
Google Scholar
H. Andréka, J. X. Madarász, and I. Németi. “Logical analysis of special relativity theory,” in: J. Gerbrandy, M. Marx, M. de Rijke, and Y. Venema (Eds.), Essays dedicated to Johan van Benthem on the occasion of his 50th birthday. Vossiuspers, Ams-terdam University Press, 1999. CD-ROM, ISBN: 90 5629 104 1, http://www.illc.uva.nl/j50.
Google Scholar
H. Andréka, J. X. Madarász, and I. Németi. “Logical axiomatizations of space-time. Samples from the literature,” in: Non-Euclidean geometries, volume 581 of Mathematics and Its Applications. New York: Springer, 2006, pp. 155–185.
CrossRef
Google Scholar
H. Andréka, J. X. Madarász, and I. Németi, “Logic of space-time and relativity theory,” in: M. Aiello, I. Pratt-Hartmann and J. van Benthem (Eds.), Handbook of Spatial Logics. Dordrecht: Springer, 2007, pp. 607–711.
CrossRef
Google Scholar
H. Andréka, J. X. Madarász, and I. Németi, “On the logical structure of relativity theories.” Research report, Alfréd Rényi Institute of Mathematics, Budapest, 2002. With contributions from A. Andai, G. Sági, I. Sain and Cs. Tőke. http://www.mathinst.hu/pub/algebraic-logic/Contents.html. 1312 pp.
Google Scholar
H. Andréka, J. X. Madarász, I. Németi, and G. Székely, “Axiomatizing relativistic dynamics without conservation postulates,” in: Studia Logica 89, 2, 2008, pp. 163–186.
CrossRef
Google Scholar
J. Ax, “The elementary foundations of spacetime,” in: Foundations of Physics 8, 7–8, 1978, pp. 507–546.
CrossRef
Google Scholar
S. A. Basri, A Deductive Theory of Space and Time. Amsterdam: North-Holland 1966.
Google Scholar
T. Benda, “A Formal Construction of the Spacetime Manifold,” in: Journal of Philosophical Logic 37, 5, 2008, pp. 441–478.
CrossRef
Google Scholar
C. C. Chang and H. J. Keisler, Model theory. Amsterdam: North-Holland 1973, 1977, 1990.
Google Scholar
H. D. Ebbinghaus, J. Flum and W. Thomas, Mathematical logic. New York: Springer-Verlag 1994.
Google Scholar
R. Goldblatt, Orthogonality and spacetime geometry. New York: Springer-Verlag 1987.
Google Scholar
J. X. Madarász. Logic and Relativity (in the light of definability theory). PhD thesis, Eötvös Loránd Univ., Budapest, 2002.
Google Scholar
J. X. Madarász, I. Németi, and G. Székely, “Twin paradox and the logical foundation of relativity theory,” in: Foundations of Physics 36, 5, 2006, pp. 681–714.
CrossRef
Google Scholar
J. X. Madarász, I. Németi, and G. Székely, “First-order logic foundation of relativity theories,” D. Gabbay, S. Goncharov and M. Zakharyaschev (Eds.), in: Mathematical problems from applied logic II. New York: Springer, 2007, pp. 217–252.
CrossRef
Google Scholar
J. X. Madarász, I. Németi, and Cs. Tőke. On generalizing the logic-approach to space-time towards general relativity: first steps. in: V. F. Hendricks, F. Neuhaus, S. A Pedersen, U. Scheffler and H. Wansing (Eds.), First-Order Logic Revisited, Logos Verlag, Berlin, 2004, pp. 225–268.
Google Scholar
V. Pambuccian, “Alexandrov-Zeeman type theorems expressed in terms of definability,” in: Aequationes Mathematicae 74, 3, 2007, pp. 249–261.
CrossRef
Google Scholar
G. Székely, First-Order Logic Investigation of Relativity Theory with an Emphasis on Accelerated Observers. PhD thesis, Eötvös Loránd Univ., Budapest, 2009.
Google Scholar
J. Vaänänen, “Second-order logic and foundations of mathematics,” in: Bulletin of Symbolic Logic 7, 4, 2001, pp. 504–520.
CrossRef
Google Scholar
J. Woleński “First-order logic: (philosophical) pro and contra,” in: V. F. Hendricks, F. Neuhaus, S. A. Pedersen, U. Scheffler and H. Wansing (Eds.), First-Order Logic Revisited. Berlin: Logos Verlag 2004, pp. 369–398.
Google Scholar