Skip to main content

Comparing Relativistic and Newtonian Dynamics in First-Order Logic

  • Conference paper

Part of the Veröffentlichungen des Instituts Wiener Kreis book series (WIENER KREIS,volume 16)

Abstract

In this paper we introduce and compare Newtonian and relativistic dynamics as two theories of first-order logic (FOL). To illustrate the similarities between Newtonian and relativistic dynamics, we axiomatize them such that they differ in one axiom only. This one axiom difference, however, leads to radical differences in the predictions of the two theories. One of their major differences manifests itself in the relation between relativistic and rest masses, see Thms. 5 and 6.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-7091-0177-3_7
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-7091-0177-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. H. Andréka, P. Burmeister, and I. Németi. Quasivarieties of partial algebras — a unifying approach towards a two-valued model theory for partial algebras. Studia Sci. Math. Hungar. 16, 1981, pp. 325–372.

    Google Scholar 

  2. H. Andréka, J. X. Madarász, and I. Németi. “Logical analysis of special relativity theory,” in: J. Gerbrandy, M. Marx, M. de Rijke, and Y. Venema (Eds.), Essays dedicated to Johan van Benthem on the occasion of his 50th birthday. Vossiuspers, Ams-terdam University Press, 1999. CD-ROM, ISBN: 90 5629 104 1, http://www.illc.uva.nl/j50.

    Google Scholar 

  3. H. Andréka, J. X. Madarász, and I. Németi. “Logical axiomatizations of space-time. Samples from the literature,” in: Non-Euclidean geometries, volume 581 of Mathematics and Its Applications. New York: Springer, 2006, pp. 155–185.

    CrossRef  Google Scholar 

  4. H. Andréka, J. X. Madarász, and I. Németi, “Logic of space-time and relativity theory,” in: M. Aiello, I. Pratt-Hartmann and J. van Benthem (Eds.), Handbook of Spatial Logics. Dordrecht: Springer, 2007, pp. 607–711.

    CrossRef  Google Scholar 

  5. H. Andréka, J. X. Madarász, and I. Németi, “On the logical structure of relativity theories.” Research report, Alfréd Rényi Institute of Mathematics, Budapest, 2002. With contributions from A. Andai, G. Sági, I. Sain and Cs. Tőke. http://www.mathinst.hu/pub/algebraic-logic/Contents.html. 1312 pp.

    Google Scholar 

  6. H. Andréka, J. X. Madarász, I. Németi, and G. Székely, “Axiomatizing relativistic dynamics without conservation postulates,” in: Studia Logica 89, 2, 2008, pp. 163–186.

    CrossRef  Google Scholar 

  7. J. Ax, “The elementary foundations of spacetime,” in: Foundations of Physics 8, 7–8, 1978, pp. 507–546.

    CrossRef  Google Scholar 

  8. S. A. Basri, A Deductive Theory of Space and Time. Amsterdam: North-Holland 1966.

    Google Scholar 

  9. T. Benda, “A Formal Construction of the Spacetime Manifold,” in: Journal of Philosophical Logic 37, 5, 2008, pp. 441–478.

    CrossRef  Google Scholar 

  10. C. C. Chang and H. J. Keisler, Model theory. Amsterdam: North-Holland 1973, 1977, 1990.

    Google Scholar 

  11. H. D. Ebbinghaus, J. Flum and W. Thomas, Mathematical logic. New York: Springer-Verlag 1994.

    Google Scholar 

  12. R. Goldblatt, Orthogonality and spacetime geometry. New York: Springer-Verlag 1987.

    Google Scholar 

  13. J. X. Madarász. Logic and Relativity (in the light of definability theory). PhD thesis, Eötvös Loránd Univ., Budapest, 2002.

    Google Scholar 

  14. J. X. Madarász, I. Németi, and G. Székely, “Twin paradox and the logical foundation of relativity theory,” in: Foundations of Physics 36, 5, 2006, pp. 681–714.

    CrossRef  Google Scholar 

  15. J. X. Madarász, I. Németi, and G. Székely, “First-order logic foundation of relativity theories,” D. Gabbay, S. Goncharov and M. Zakharyaschev (Eds.), in: Mathematical problems from applied logic II. New York: Springer, 2007, pp. 217–252.

    CrossRef  Google Scholar 

  16. J. X. Madarász, I. Németi, and Cs. Tőke. On generalizing the logic-approach to space-time towards general relativity: first steps. in: V. F. Hendricks, F. Neuhaus, S. A Pedersen, U. Scheffler and H. Wansing (Eds.), First-Order Logic Revisited, Logos Verlag, Berlin, 2004, pp. 225–268.

    Google Scholar 

  17. V. Pambuccian, “Alexandrov-Zeeman type theorems expressed in terms of definability,” in: Aequationes Mathematicae 74, 3, 2007, pp. 249–261.

    CrossRef  Google Scholar 

  18. G. Székely, First-Order Logic Investigation of Relativity Theory with an Emphasis on Accelerated Observers. PhD thesis, Eötvös Loránd Univ., Budapest, 2009.

    Google Scholar 

  19. J. Vaänänen, “Second-order logic and foundations of mathematics,” in: Bulletin of Symbolic Logic 7, 4, 2001, pp. 504–520.

    CrossRef  Google Scholar 

  20. J. Woleński “First-order logic: (philosophical) pro and contra,” in: V. F. Hendricks, F. Neuhaus, S. A. Pedersen, U. Scheffler and H. Wansing (Eds.), First-Order Logic Revisited. Berlin: Logos Verlag 2004, pp. 369–398.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this paper

Cite this paper

Madarász, J.X., Székely, G. (2011). Comparing Relativistic and Newtonian Dynamics in First-Order Logic. In: Máté, A., Rédei, M., Stadler, F. (eds) Der Wiener Kreis in Ungarn / The Vienna Circle in Hungary. Veröffentlichungen des Instituts Wiener Kreis, vol 16. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0177-3_7

Download citation