Vienna Circle and Logical Analysis of Relativity Theory

  • H. Andréka
  • J. X. Madarász
  • I. Németi
  • P. Németi
  • G. Székely
Part of the Veröffentlichungen des Instituts Wiener Kreis book series (WIENER KREIS, volume 16)

Abstract

In this paper we will present some of our school’s results in the area of building up relativity theory (RT) as a hierarchy of theories in the sense of logic. We use plain first-order logic (FOL) as in the foundation of mathematics (FOM) and we build on experience gained in FOM. The main aims of our school are the following: We want to base the theory on simple, unambiguous axioms with clear meanings. It should be absolutely understandable for any reader what the axioms say and the reader can decide about each axiom whether he likes it. The theory should be built up from these axioms in a straightforward, logical manner. We want to provide an analysis of the logical structure of the theory. We investigate which axioms are needed for which predictions of RT. We want to make RT more transparent logically, easier to understand, easier to change, modular, and easier to teach. We want to obtain a deeper understanding of RT.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Ax, J., The elementary foundations of spacetime, Foundations of Physics 8, 7-8 (1978), pp.507–546.CrossRefGoogle Scholar
  2. [2]
    Andai, A., Andréka, H., Madarász, J. X. and Németi, I., Visualizing some ideas about Gödel-type rotating universes, in: M. Scherfner and M. Plaue, eds., Gödel-type spacetimes: history and new developments, Springer, to appear. arXiv:0811.2910vl.Google Scholar
  3. [3]
    Andréka, H., Madarász, J. X. and Németi, I., Logical axiomatizations of space-time. Samples from the literature, in: A. Prékopa and E. Molnár, eds., Non-Euclidean geometries, volume 581 of Mathematics and Its Applications. Springer, 2006, pp.155–185.Google Scholar
  4. [4]
    Andréka, H., Madarász, J. X. and Németi, I., Logic of space-time and relativity theory, in: M. Aiello, I. Pratt-Hartmann and J. van Benthem, eds., Handbook of Spatial Logics. Springer, 2007, pp.607–711.Google Scholar
  5. [5]
    Andréka, H., Madarász, J. X. and Németi, L, On the logical structure of relativity theories. E-book, Alfréd Rényi Institute of Mathematics, Budapest, 2002. With contributions from Andai, A., Sági, G., Sain, I. and Tőke, Cs. http://www.math-inst.hu/pub/algebraic-logic/Contents.html. 1312 pp.Google Scholar
  6. [6]
    Andréka, H., Madarász, J. X., Németi, I. and Székely, G., Axiomatizing relativistic dynamics without conservation postulates, Studia Logica 89, 2 (2008), pp.163–186.CrossRefGoogle Scholar
  7. [7]
    Andréka, H., Németi, I. and Wüthrich, C., A twist in the geometry of rotating black holes: seeking the cause of acausality, General Relativity and Gravitation 40, 9 (2008), pp.1809–1823.CrossRefGoogle Scholar
  8. [8]
    Carnap, R., Frank, P., Hahn, H., Neurath, O., Joergensen, J. and Morris, C. (eds)., Unified Science. These works are translated in Unified Science: The Vienna Circle Monograph Series Originally Edited by Otto Neurath, Kluwer, 1987.Google Scholar
  9. [9]
    Chang, C. C. and H. Keisler, J., Model theory. North-Holland 1973, 1977, 1990.Google Scholar
  10. [10]
    Einstein, A., Über den Einfluss der Schwercraft auf die Ausbreitung des Lichtes, Annalen der Physik 35, 10 (1911), pp.898–908.CrossRefGoogle Scholar
  11. [11]
    Einstein, A., Über die Spezielle und die Allgemeine Relativitätstheorie, Verlag von F. Vieweg and Son, Braunschweig, 1921.Google Scholar
  12. [12]
    Friedman, H., On foundational thinking 1, Posting in FOM (Foundations of Mathematics), Archives www.cs.nyu.edu, January 20 2004.
  13. [13]
    Friedman, M., Foundations of Space-Time Theories. Relativistic Physics and Philosophy of Science, Princeton University Press 1983.Google Scholar
  14. [14]
    Friedman, M., Reconsidering logical positivism, Cambridge University Press 1999.Google Scholar
  15. [15]
    Gabbay, D. M., Labelled Deductive Systems, Clarendon Press, 1996.Google Scholar
  16. [16]
    Goldblatt, R., Orthogonality and spacetime geometry, Springer-Verlag, 1987.Google Scholar
  17. [17]
    Gödel, K., An Example of a New Type of Cosmological Solutions of Einstein’s Field Equations of Gravitation, Reviews of Modern Physics 21, 3 (1949), pp.447–450.CrossRefGoogle Scholar
  18. [18]
    Henkin, L., Monk, J. D., and Tarski, A., Cylindric Algebras Part II, North-Holland, 1985.Google Scholar
  19. [19]
    Henkin, L., Monk, J. D., Tarski, A., Andréka, H., and Németi, I., Cylindric Set Algebras, Lecture Notes in Mathematics Vol 883, Springer Verlag, 1981.Google Scholar
  20. [20]
    Hirsch, R., Einstein: Logic, Philosophy, Politics. Abstract for talk in “Logic in Hungary, 2005”, Budapest, Hungary August 5–10, 2005. http://atlas-conferences.com/cgi-bin/abstract/caqb-48
  21. [21]
    Hodges, W., Model Theory, Cambridge University Press, 1993.Google Scholar
  22. [22]
    Madarász, J. X., Logic and Relativity (in the light of definability theory). PhD thesis, Eötvös Loránd Univ., Budapest, 2002. http://www.math-inst.hu/pub/algebraic-logic/diszi0226.pdf.gz Google Scholar
  23. [23]
    Madarász, J. X., Németi, I. and Székely, G., Twin paradox and the logical foundation of relativity theory, Foundations of Physics 36, 5 (2006), pp.681–714.CrossRefGoogle Scholar
  24. [24]
    Madarász, J. X., Németi, I. and Székely, G., First-order logic foundation of relativity theories, in: D. M. Gabbay, S. Goncharov and M. Zakharyaschev, eds., Mathematical problems from applied logic II. Springer, 2007, pp.217–252.Google Scholar
  25. [25]
    Makkai, M., Duality and definability in first order logic, Memoirs of the American Mathematical Society No 503, Providence, Rhode Island, 1993.Google Scholar
  26. [26]
    Mikulás, Sz., Németi, I. and Sain, I., Decidable Logics of the Dynamic Trend, and Relativized Relation Algebras. In: L. Csirmaz, D. M. Gabbay and M. de Rijke, eds., Logic Colloquium’92, Studies in Logic, Language and Computation, CSLI Publications, 1995. pp.165–175.Google Scholar
  27. [27]
    Mundy, B., Optical axiomatization of Minkowski space-time geometry, Philosophy of Science 53, 1 (1986), pp.1–30.CrossRefGoogle Scholar
  28. [28]
    Németi, I. and David, Gy., “Relativistic computers and the Turing barrier”, in: Applied Mathematics and Computation 178, 1 (2006), pp.118–142.CrossRefGoogle Scholar
  29. [29]
    Neurath, O., Carnap, R. and Morris, C. (eds), Foundations of the Unity of Science. The university of Chicago Press, Series: Foundations of the Unity of Science: Toward an International Encyclopedia of Unified Science. Vol.s 1 and 2. 1971.Google Scholar
  30. [30]
    Pambuccian, V., Alexandrov-Zeeman type theorems expressed in terms of definability, Aequationes Mathematicae 74, 3 (2007), pp.249–261.CrossRefGoogle Scholar
  31. [31]
    Reichenbach, M., Axiomatization of the theory of relativity, Univeversity of California Press, Berkeley, 1969. Translated by M. Reichenbach. Original German edition published in 1924.Google Scholar
  32. [32]
    Robb, A. A., A Theory of Time and Space. Cambridge University Press, 1914.Google Scholar
  33. [33]
    Szabo, L. E., Empirical foundation of space and time. In: M. Suárez, M. Dorato and M. Rédei, eds., EPSA; Epistemology and Methodology: Launch of the European Philosophy of Science Association Proceedings of the First Conference of the European Philosophy of Science Association, Madrid, Spain, November 14–17, 2007, Springer, 2009.Google Scholar
  34. [34]
    Székely, G., On why-questions in physics, in this volume.Google Scholar
  35. [35]
    Székely, G., First-Order Logic Investigation of Relativity Theory with an Emphasis on Accelerated Observers, PhD thesis, Eötvös Loránd Univ., Budapest, 2009.Google Scholar
  36. [36]
    Tarski, A., What is elementary geometry?, In: L. Henkin, P. Suppes and A. Tarski, eds., The axiomatic method with special reference to geometry and physics, North-Holland, 1959, pp.16–29.Google Scholar
  37. [37]
    Tarski, A., and Givant, S. R., Tarski’s system of geometry, Bulletin of Symbolic Logic, 5, 2 (1999), pp.175–214.CrossRefGoogle Scholar
  38. [38]
    van Benthem, J. F. A. K., Exploring logical dynamics, Sudies in Logic, Language and Information, CSLI Publications, 1996.Google Scholar
  39. [39]
    Wald, R. M., General Relativity, The University of Chicago Press, 1984.Google Scholar

Copyright information

© Springer-Verlag/Wien 2011

Authors and Affiliations

  • H. Andréka
  • J. X. Madarász
  • I. Németi
  • P. Németi
  • G. Székely

There are no affiliations available

Personalised recommendations