Skip to main content

Applications of polyconvexity and strong ellipticity to nonlinear elasticity and elastic plate theory

  • Chapter
Poly-, Quasi- and Rank-One Convexity in Applied Mechanics

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 516))

Abstract

These notes consist of two main parts. In the first are described some recent results on the practical adaptation of polyconvexity criteria to models of nonlinearly elastic isotropic and transversely isotropic solids. The second part is concerned with the application of strong ellipticity in three dimensions to the construction of two-dimensional models for the combined bending and stretching of thin plates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • R. Abeyaratne and C.O. Horgan. The pressurized hollow sphere problem in finite elastostatics for a class of compressible materials. Int. J. Solids Struct, 20:715–723, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  • J.M. Ball. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rat. Mech. Anal., 63:337–403, 1977a.

    Article  MATH  Google Scholar 

  • J.M. Ball. Constitutive inequalities and existence theorems in nonlinear elastostatics. Nonlinear Analysis and Mechanics, Heriot-Watt Symposium (ed. R.J. Knops; Pitman, London 1977), pages 187–241, 1977b.

    Google Scholar 

  • J.M. Ball, J.C. Currie, and P.J. Olver. Null-Lagrangians, weak continuity, and variational problems of arbitrary order. J. Functional Analysis, 41: 135–174, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  • J.-P. Boehler. A simple derivation of representations for non-polynomial constitutive equations in some cases of anisotropy. Z. Angew. Math. Mech., 59:157–167, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  • M.M. Carroll. Finite strain solutions in compressible isotropic elasticity. J. Elasticity, 20:65–92, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  • P.G. Ciarlet. Mathematical Elasticity, Vol. 3: Theory of Shells. North-Holland, 2000.

    Google Scholar 

  • P.G. Ciarlet. An introduction to differential geometry with applications to elasticity. J. Elasticity, 78–79:3–201, 2005.

    MathSciNet  Google Scholar 

  • B.D. Coleman and D.C. Newman. On the rheology of cold drawing I. Elastic materials. J. Polymer Sci., B26:1801–1822, 1988.

    Google Scholar 

  • G. Friesecke, R.D. James, and S. Müller. A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence. Arch. Rat. Mech. Anal., 180:183–236, 2006.

    Article  MATH  Google Scholar 

  • T.J. Healey and P. Rosakis. Unbounded branches of classical injective solutions to the forced displacement problem in nonlinear elastostatics. J. Elasticity, 49:65–78, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  • M.G. Hilgers and A.C. Pipkin. Elastic sheets with bending stiffness. Quart. J. Mech. Appl. Math., 45:57–75, 1992a.

    Article  MATH  MathSciNet  Google Scholar 

  • M.G. Hilgers and A.C. Pipkin. Bending energy of highly elastic membranes. Quart. Appl. Math., 50:389–400, 1992b.

    MATH  MathSciNet  Google Scholar 

  • M.G. Hilgers and A.C. Pipkin. Bending energy of highly elastic membranes II. Quart. Appl. Math., 54:307–316, 1996.

    MATH  MathSciNet  Google Scholar 

  • M.G. Hilgers and A.C. Pipkin. The Graves condition for variational problems of arbitrary order. IMA J. Appl. Math., 48:265–269, 1992c.

    Article  MATH  MathSciNet  Google Scholar 

  • F. John. Estimates for the derivatives of the stresses in a thin shell and interior shell equations. Comm. Pure Appl. Math., 18:235–267, 1965.

    Article  MathSciNet  Google Scholar 

  • F. John. Plane strain problems for a perfectly elastic material of harmonic type. Comm. Pure Appl. Math., 13:239–296, 1960.

    Article  MATH  MathSciNet  Google Scholar 

  • W.T. Koiter. Foundations and basic equations of shell theory. A survey of recent progress. Theory of Thin Shells, Proc. IUTAM-Symposium, Copenhagen (ed. F.I. Niordson). Springer, Berlin, pages 93–105, 1969.

    Google Scholar 

  • W.T. Koiter. A consistent first approximation in the general theory of thin elastic shells. Proc. IUTAM-Symposium on the Theory of Thin Elastic Shells, Delft (ed. W.T. Koiter). North-Holland, Amsterdam, pages 12–33, 1960.

    Google Scholar 

  • W.T. Koiter. On the nonlinear theory of thin elastic shells. Proc. Koninkl. Nederl. Akad. Wetenschappen, B69:1–54, 1966.

    MathSciNet  Google Scholar 

  • P. Podio-Guidugli. Polyconvex energies and symmetry requirements. J. Elasticity, 26:223–237, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Podio-Guidugli and G. Vergara Caffarelli. Extreme elastic deformations. Arch. Rat. Mech. Anal., 115:311–328, 1991.

    Article  MATH  Google Scholar 

  • R.S. Rivlin. A note on the constitutive equation for an isotropic elastic material. Math. Mech. Solids, 9:121–129, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  • K.N. Sawyers. Comments on the paper “Determination of the stretch and rotation factors in the polar decomposition of the deformation gradient” by A. Hoger and D.E. Carlson. Quart. Appl. Math., 44:309–311, 1986.

    Google Scholar 

  • J. Schröder, P. Neff, and V. Ebbing. Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors. Jour. Mech. Phys. Solid., 56(12):3486–3506, 2008.

    Article  MATH  Google Scholar 

  • D.J. Steigmann. Invariants of the stretch tensors and their application to finite elasticity theory. Math. Mech. Solids, 7:393–404, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  • D.J. Steigmann. On isotropic, frame-invariant, polyconvex strain-energy functions. Quart. J. Mech. Appl. Math., 56:483–491, 2003a.

    Article  MATH  MathSciNet  Google Scholar 

  • D.J. Steigmann. Frame-invariant polyconvex strain-energy functions for some anisotropic solids. Math. Mech. Solids, 8:497–506, 2003b.

    Article  MATH  MathSciNet  Google Scholar 

  • D.J. Steigmann. Thin-plate theory for large elastic deformations. Int. J. Non-linear Mech., 42:233–240, 2007.

    Article  Google Scholar 

  • D.J. Steigmann. Two-dimensional models for the combined bending and stretching of plates and shells based on three-dimensional linear elasticity. Int. J. Engng. Sci., 46:654–676, 2008.

    Article  MathSciNet  Google Scholar 

  • D.J. Steigmann. Equilibrium theory for magnetic elastomers and magne-toelastic membranes. Int. J. Non-linear Mech., 39:1193–1216, 2004.

    Article  MATH  Google Scholar 

  • L.T. Wheeler. On the derivatives of the stretch and rotation with respect to the deformation gradient. J. Elasticity, 24:129–133, 1990.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 CISM, Udine

About this chapter

Cite this chapter

Steigmann, D.J. (2010). Applications of polyconvexity and strong ellipticity to nonlinear elasticity and elastic plate theory. In: Schröder, J., Neff, P. (eds) Poly-, Quasi- and Rank-One Convexity in Applied Mechanics. CISM International Centre for Mechanical Sciences, vol 516. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0174-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0174-2_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0173-5

  • Online ISBN: 978-3-7091-0174-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics