Advertisement

Nematic elastomers: modelling, analysis, and numerical simulations

  • Antonio DeSimone
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 516)

Abstract

We review in these notes some of our recent work on modelling the mechanical response of nematic elastomers, both under static and dynamic loadings. Our aim is to compare theoretical results based on mathematical analysis and numerical simulations with the available experimental evidence, in order to examine critically the various accomplishments, and some interesting problems that remain open.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. P. Bladon, E. M. Terentjev, and M. Warner. Transitions and instabilities in liquid-crystal elastomers. Phys. Rev. E, 47:R3838–R3840, 1993.CrossRefGoogle Scholar
  2. P. Cesana. Relaxation of multi-well energies in linearized elasticity and applications to nematic elastomers. Submitted, 2009.Google Scholar
  3. P. Cesana and A. DeSimone. Strain-order coupling in nematic elastomers: equilibrium configurations. Math. Models Methods Appl. Sci., 19:601–630, 2009.zbMATHCrossRefMathSciNetGoogle Scholar
  4. S. Conti, A. DeSimone, and G. Dolzmann. Soft elastic response of stretched sheets of nematic elastomers: a numerical study. J. Mech. Phys. Solids, 50:1431–1451, 2002a.zbMATHCrossRefMathSciNetGoogle Scholar
  5. S. Conti, A. DeSimone, and G. Dolzmann. Semi-soft elasticity and director reorientation in stretched sheets of nematic elastomers. Phys. Rev. E, 66:0617101–0617108, 2002b.CrossRefGoogle Scholar
  6. A. DeSimone. Energetics of fine domain structures. Ferroelectrics, 222: 275–284, 1999.CrossRefGoogle Scholar
  7. A. DeSimone and G. Dolzmann. Material instabilities in nematic elastomers. Physica D, 136:175–191, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  8. A. DeSimone and G. Dolzmann. Macroscopic response of nematic elastomers via relaxation of a class of SO (3)-invariant energies. Arch. Rat. Mech. Anal., 161:181–204, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  9. A. DeSimone and G. Dolzmann. Striping in nematic elastomers: old and new. In: Modeling of Soft Matter (M. C. Calderer, E. Terentjev eds.). Springer, 2005.Google Scholar
  10. A. DeSimone and L. Teresi. Elastic energies for nematic elastomers. Eur. Phys. J. E, in press, 2009.Google Scholar
  11. A. DeSimone, A. Di Carlo, and L. Teresi. Critical volages and blocking stresses in nematic gels. Eur. Phys. J. E, 24:303–310, 2007.CrossRefGoogle Scholar
  12. H. Finkelmann and G. Rehage. Liquid crystal side chain polymers. Adv. Polymer Sci., 60/61:99–172, 1984.Google Scholar
  13. H. Finkelmann, W. Gleim, H.J. Kock, and G. Rehage. Liquid crystalline polymer network — rubber elastic material with exceptional properties. Makromol. Chem. Suppl., 12:49, 1985.CrossRefGoogle Scholar
  14. H. Finkelmann, I. Kundler, E. M. Terentjev, and M. Warner. Critical stripe-domain instability of nematic elastomers. J. Phys. II France, 7:1059–1069, 1997.CrossRefGoogle Scholar
  15. E. Fried and V. Korchagin. Striping of nematic elastomers. Int. J. Solids Structures, 39:3451–3467, 2002.zbMATHCrossRefGoogle Scholar
  16. M. E. Gurtin. Introduction to Continuum Mechanics. Academic Press, 1981.Google Scholar
  17. T. Ikeda. Fundamentals of Piezoelectricity. University Press, 1990.Google Scholar
  18. I. Kundler and H. Finkelmann. Strain-induced director reorientation in nematic liquid single crystal elastomers. Macromol. Rapid Comm., 16: 679–686, 1995.CrossRefGoogle Scholar
  19. J. Küpfer and H. Finkelmann. Nematic liquid single-crystal elastomers. Makromol. Chem. Rapid Comm., 12:717–726, 1991.CrossRefGoogle Scholar
  20. P. Martinoty, P. Stein, H. Finkelmann, H. Pleiner, and H.R. Brand. Mechanical properties of mono domain side chain nematic elastomers. Eur. Phys. J. E, 14:311, 2004.CrossRefGoogle Scholar
  21. S. Müller. Variational models for microstructure and phase transitions. In: Bethuel, F., Huisken, G., Müller, S., Steffen, K., Hildebrandt, S., Struwe, M. (Eds.), Calculus of Variations and Geometric Evolution Problems, Lectures given at the 2nd Session of the Centro Internazionale Matematico Estivo, Cetraro 1996. Springer, Berlin, 1999.Google Scholar
  22. M. Silhavy. Ideally soft nematic elastomers. Networks and Heterogeneous Media, 2:279–311, 2007.zbMATHMathSciNetGoogle Scholar
  23. M. Silhavy. The Mechanics and Thermodynamics of Continuous Media. Springer, 1997.Google Scholar
  24. G. C. Verwey, M. Warner, and E. M. Terentjev. Elastic instability and stripe domains in liquid crystalline elastomers. J. Phys. II France, 6: 1273–1290, 1996.CrossRefGoogle Scholar
  25. M. Warner and E. M. Terentjev. Liquid Crystal Elastomers. Clarendon Press, 2003.Google Scholar
  26. J. Weilepp and H. Brand. Director reorientation in nematic-liquid-single-crystal elastomers by external mechanical stress. Europhys. Lett., 34: 495–500, 1996.CrossRefGoogle Scholar
  27. R. Zentel. Liquid crystal elastomers. Angew. Chem. Adv. Mater., 101:1437, 1989.Google Scholar
  28. E. R. Zubarev, S. A. Kuptsov, T. I. Yuranova, R. V. Talroze, and H. Finkelmann. Monodomain liquid crystalline networks: reorientation mechanism from uniform to stripe domains. Liquid Crystals, 26:1531–1540, 1999.CrossRefGoogle Scholar

Copyright information

© CISM, Udine 2010

Authors and Affiliations

  • Antonio DeSimone
    • 1
  1. 1.SISSA-International School for Advanced StudiesTriesteITALY

Personalised recommendations