Advertisement

Phase transitions with interfacial energy: convexity conditions and the existence of minimizers

  • M. Šilhavý
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 516)

Abstract

The article presents a variational theory of sharp phase interfaces bearing a deformation dependent energy. The theory involves both the standard and Eshelby stresses. The constitutive theory is outlined including the symmetry considerations and some particular cases. The existence of phase equilibria is proved based on appropriate convexity properties of the interfacial energy. Some generalization of the convexity properties is given and a relationship established to the semiellipticity condition from the theory of parametric integrals over rectifiable currents.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. F. J. Almgren, Jr. Existence and Regularity Almost Everywhere of Solutions to Elliptic Variational Problems among Surfaces of Varying Topological Type and Singularity Structure. Annals of Mathematics, 87:321–391, 1968.CrossRefMathSciNetGoogle Scholar
  2. L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free discontinuity problems. Oxford, Clarendon Press 2000.zbMATHGoogle Scholar
  3. J. M. Ball. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal., 63:337–403, 1977.zbMATHCrossRefGoogle Scholar
  4. J. M. Ball, and R. D. James. Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal., 100:13–52, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  5. J. M. Ball, and F. Murat. W 1,p-quasiconvexity and variational problems for multiple integrals. J. Fund. Anal., 58:225–253, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  6. B. Dacorogna. Direct methods in the calculus of variations. Second Edition. Berlin, Springer, 2008.zbMATHGoogle Scholar
  7. J. D. Eshelby. The force on an elastic singularity. Phil. Trans. Royal Soc. London, A244:87–112, 1951.zbMATHMathSciNetGoogle Scholar
  8. J. D. Eshelby. Continuum theory of defects. In D. Turnbull editor, Solid State Physics, vol. 3 pp. 79–144: Academic Press, New York, 1956.Google Scholar
  9. H. Fédérer. Geometric measure theory. New York, Springer, 1969.zbMATHGoogle Scholar
  10. I. Fonseca. Interfacial energy and the Maxwell rule. Arch. Rational Mech. Anal., 106:63–95,1989.zbMATHCrossRefMathSciNetGoogle Scholar
  11. M. Giaquinta, G. Modica, and J. Souček. Cartesian currents, weak diffeomorphisms and existence theorems in non-linear elasticity. Arch. Rational Mech. Anal., 106:97–160,1989.zbMATHCrossRefMathSciNetGoogle Scholar
  12. M. Giaquinta, G. Modica, and J. Souček. Cartesian Currents in the Calculus of Variations I, II. Berlin, Springer, 1998.Google Scholar
  13. M. E. Gurtin. The nature of configurational forces. Arch. Rational Mech. Anal., 131:67–100, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  14. M. E. Gurtin. Configurational forces as basic concepts of continuum physics. New York, Springer, 2000.Google Scholar
  15. M. E. Gurtin, and I. Murdoch. A continuum theory of elastic material surfaces. Arch. Rational Mech. Anal., 57:291–323, 1975.zbMATHCrossRefMathSciNetGoogle Scholar
  16. M. E. Gurtin, and A. Struthers. Multiphase thermomechanics with interfacial structure, 3. Evolving phase boundaries in the presence of bulk deformation. Arch. Rational Mech. Anal., 112:97–160, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  17. P. H. Leo, and R. F. Sekerka. The effect of surface stress on crystal-melt and crystal-crystal equilibrium. Acta Metall., 37:3119–3138, 1989.CrossRefGoogle Scholar
  18. J. E. Marsden, and T. J. R. Hughes. Mathematical foundations of elasticity. Englewood Cliffs, Prentice-Hall, 1983.zbMATHGoogle Scholar
  19. C. B. Morrey, Jr. Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math., 2:25–53, 1952.zbMATHMathSciNetGoogle Scholar
  20. C. B. Morrey, Jr. Multiple integrals in the calculus of variations. New York, Springer, 1966.zbMATHGoogle Scholar
  21. S. Müller. Variational Models for Microstructure and Phase Transitions. In S. Hildebrandt, M. Struwe editor, Calculus of variations and geometric evolution problems (Cetraro, 1996) Lecture Notes in Math. 1713 pp. 85–210, Springer, Berlin, 1999.CrossRefGoogle Scholar
  22. S. Müller, Q. Tang, and B. S. Yan. On a new class of elastic deformations not allowing for cavitation. Ann. Inst. H. Poincaré, Analyse non linéaire, 11:217–243, 1994.zbMATHGoogle Scholar
  23. G. P. Parry. On shear bands in unloaded crystals. J. Mech. Phys. Solids, 35:367–382, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  24. M. Pitteri, and G. Zanzotto. Continuum models for phase transitions and twinning in crystals. Boca Raton, Chapman & Hall/CRC, 2003.zbMATHGoogle Scholar
  25. P. Podio-Guidugli. Configurational balances via variational arguments. Interfaces and Free Boundaries, 3:223–232, 2001.zbMATHMathSciNetGoogle Scholar
  26. P. Podio-Guidugli. Configurational forces: are they needed? Mechanics Research Communications, 29:513–519, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  27. J. Schröder, P. Neff, and V. Ebbing. Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors. Journal of the Mechanics and Physics of Solids, 56:3486–3506, 2008zbMATHCrossRefMathSciNetGoogle Scholar
  28. M. Ŝilhavý. Phase transitions with inter facial energy: a variational approach. Preprint, Institute of Mathematics, AS CR, Prague. 2008-10-22Google Scholar
  29. P. Steinmann. On boundary potential energies in deformational and configurational mechanics. Journal of the Mechanics and Physics of Solids, 56:772–800, 2008.zbMATHCrossRefMathSciNetGoogle Scholar
  30. H. Whitney. Geometric integration theory. Princeton, Princeton University Press, 1957.zbMATHGoogle Scholar
  31. G. Wulff. Zur Frage der Geschwindigkeit des Wachstums and der Auflösung der Kristallflächen. Zeitschrift für Kristallographie, 34:449–530, 1901.Google Scholar

Copyright information

© CISM, Udine 2010

Authors and Affiliations

  • M. Šilhavý
    • 1
  1. 1.Institute of Mathematics of the AV ČRPrague 1Czech Republic

Personalised recommendations