Skip to main content

Construction of polyconvex energies for non-trivial anisotropy classes

  • Chapter
Poly-, Quasi- and Rank-One Convexity in Applied Mechanics

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 516))

Abstract

Hyperelastic material behavior can be preferably described by using polyconvex energies, since the existence of minimizers is then guaranteed, if, in addition, the coercivity condition is satisfied. We give an overview of the construction of polyconvex energies for the description of non-trivial anisotropy classes, namely the triclinic, monoclinic, rhombic, tetragonal, trigonal and cubic symmetry groups, as well as transverse isotropy. The anisotropy of the material is described by invariants in terms of the right Cauchy-Green tensor and a specific second-order and a fourth-order structural tensor, respectively. To show the capability of the proposed polyconvex energies to simulate real anisotropic material behavior we focus on fittings of fourth-order elasticity tensors near the reference state to experimental data of different anisotropic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • J. M. Ball. Convexity conditions and existence theorems in non-linear elasticity. Archive for Rational Mechanics and Analysis, 63:337–403, 1977.

    Article  MATH  Google Scholar 

  • J. Betten. Integrity basis for a second-order and a fourth-order tensor. International Journal of Mathematics and Mathematical Sciences, 5(1): 87–96, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Betten. Invariants of fourth-order tensors. In J. P. Boehler, editor, Applications of Tensor Functions in Solid Mechanics, volume 292 of CISM Courses and Lectures, pages 13–30. Springer, 1987.

    Google Scholar 

  • J. Betten. Recent advances in applications of tensor functions in solid mechanics. Advances in Mechanics, 14(1):79–109, 1991.

    MathSciNet  Google Scholar 

  • J. Betten. Anwendungen von Tensorfunktionen in der Kontinuumsmechanik anisotroper Materialien. Zeitschrift für Angewandte Mathematik und Mechanik, 78 (8):507–521, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Betten and W. Heiisch. Irreduzible Invarianten eines Tensors vierter Stufe. Zeitschrift für Angewandte Mathematik und Mechanik, 72(1):45–57, 1992.

    Article  MATH  Google Scholar 

  • J. Betten and W. Heiisch. Simultaninvarianten bei Systemen zwei-und vierstufiger Tensoren. Zeitschrift für Angewandte Mathematik und Mechanik, 75:753–759, 1995.

    MATH  Google Scholar 

  • J. Betten and W. Heiisch. Tensorgeneratoren bei Systemen von Tensoren zweiter und vierter Stufe. Zeitschrift für Angewandte Mathematik und Mechanik, 76(2):87–92, 1996.

    Article  MATH  Google Scholar 

  • J. P. Boehler. On irreducible representations for isotropic scalar functions. Zeitschrift für Angewandte Mathematik und Mechanik, 57:323–327, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  • J. P. Boehler. Lois de comportement anisotrope des milieux continus. Journal de Mécanique, 17(2): 153–190, 1978.

    MATH  MathSciNet  Google Scholar 

  • J. P. Boehler. A simple derivation of res presentations for non-polynomial constitutive equations in some cases of anisotropy. Zeitschrift für Angewandte Mathematik und Mechanik, 59:157–167, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  • J. P. Boehler. Introduction to the invariant formulation of anisotropic constitutive equations. In J. P. Boehler, editor, Applications of Tensor Functions in Solid Mechanics, volume 292 of CISM Courses and Lectures, pages 13–30. Springer, 1987.

    Google Scholar 

  • T. Böhlke and C. Brüggemann. Graphical representation of the generalized hooke’s law. Technische Mechanik (Magdeburg), 21(2):145–158, 2001.

    Google Scholar 

  • V. Ebbing, J. Schröder, and P. Neff. Approximation of anisotropic elasticity tensors at the reference state with polyconvex energies. Archive of Applied Mechanics, 79:651–657, 2009.

    Article  Google Scholar 

  • M. Itskov and N. Aksel. A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. International Journal of Solids and Structures, 41:3833–3848, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  • N. Kambouchev, J. Fernandez, and R. Radovitzky. A polyconvex model for materials with cubic symmetry. Modelling and Simulation in Material Science and Engineering, 15:451–467, 2007.

    Article  Google Scholar 

  • I. S. Liu. On representations of anisotropic invariants. International Journal of Engineering Science, 20:1099–1109, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Menzel and P. Steinmann. On the comparison of two strategies to formulate orthotropic hyperelasticity. Journal of Elasticity, 62:171–201, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  • F. E. Neumann. Vorlesungen über die Theorie der Elastizität der festen Körper und des Lichtäthers. Teubner, 1885.

    Google Scholar 

  • J. Schröder and P. Neff. On the construction of polyconvex anisotropic free energy functions. In C. Miehe, editor, Proceedings of the IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains, pages 171–180. Kluwer Academic Publishers, 2001.

    Google Scholar 

  • J. Schröder and P. Neff. Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. International Journal of Solids and Structures, 40:401–445, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Schröder, P. Neff, and V. Ebbing. Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors. Journal of the Mechanics and Physics of Solids, 56(12):3486–3506, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Schröder, P. Neff, and V. Ebbing. Polyconvex energies for trigonal, tetragonal and cubic symmetry groups. In K. Hackl, editor, Proceedings of the IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials, Bochum 2008, 2009. submitted.

    Google Scholar 

  • H. P. Schwefel. Evolution and Optimum Seeking. Wiley, 1996.

    Google Scholar 

  • L. A. Shuvalov. Modern Crystallography IV, Physical Properties of Crystals. Springer, 1988.

    Google Scholar 

  • G. Simmons and H. Wang. Single Crystal Elastic Constants and Calcu lated Aggregate Properties. The M.I.T. Press, Massachusetts Institute of Technology, 1971.

    Google Scholar 

  • G. F. Smith. On a fundamental error in two papers of C.-C. Wang “On representations for isotropic functions, Parts I and II”. Archive for Rational Mechanics and Analysis, 36:161–165, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  • G. F. Smith. On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. International Journal of Engineering Science, 9:899–916, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  • A. J. M. Spencer. Theory of invariants. In A.C. Eringen, editor, Continuum Physics, volume 1, pages 239–353. Academic Press, 1971.

    Google Scholar 

  • A. J. M. Spencer. The formulation of constitutive equations for anisotropic solids. In J. P. Boehler, editor, Mechanical Behaviour of Anisotropic Solids, Editions du CNRS, Paris and M. Nijhoff, pages 2–26. The Hague, 1982.

    Google Scholar 

  • C.-C. Wang. On representations for isotropic functions. Part I. Isotropic functions of symmetric tensors and vectors. Archive for Rational Mechanics and Analysis, 33:249–267, 1969a.

    Article  MathSciNet  Google Scholar 

  • C.-C. Wang. On representations for isotropic functions. Part II. Isotropic functions of skew-symmetric tensors, symmetric tensors, and vectors. Archive for Rational Mechanics and Analysis, 33:268–287, 1969b.

    Article  MathSciNet  Google Scholar 

  • C.-C. Wang. A new representation theorem for isotropic functions: An answer to professor G. F. Smith’s Criticism of my papers on representations for isotropic functions. Part 1. Scalar-valued isotropic functions. Archive for Rational Mechanics and Analysis, 36:166–197, 1970a.

    Article  MATH  MathSciNet  Google Scholar 

  • C.-C. Wang. A new representation theorem for isotropic functions: An answer to professor G. F. Smith’s Criticism of my papers on representations for isotropic functions. Part 2. Vector-valued isotropic functions, symmetric tensor-valued isotropic functions, and skew-symmetric tensor-valued isotropic functions. Archive for Rational Mechanics and Analysis, 36:198–223, 1970b.

    Article  MATH  MathSciNet  Google Scholar 

  • C.-C. Wang. Corrigendum to my recent papers on “Representations for isotropic functions”. Archive for Rational Mechanics and Analysis, 43:392–395, 1971.

    Article  MathSciNet  Google Scholar 

  • H. Xiao. On isotropic extension of anisotropic tensor functions. Zeitschrift für Angewandte Mathematik und Mechanik, 76(4):205–214, 1996.

    Article  MATH  Google Scholar 

  • H. Xiao. A unified theory of representations for scalar-, vector-and second order tensor-valued anisotropic functions of vectors and second order tensors. Archives of Mechanics, 49:995–1039, 1997.

    MATH  Google Scholar 

  • Q.-S. Zheng. A note on representation for isotropic function of 4th-order tensors in 2-dimensional space. Zeitschrift für Angewandte Mathematik und Mechanik, 74:357–359, 1994a.

    Article  MATH  Google Scholar 

  • Q.-S. Zheng. Theory of representations for tensor functions — a unified invariant approach to constitutive equations. Applied Mechanics Reviews, 47:545–587, 1994b.

    Article  Google Scholar 

  • Q.-S. Zheng and J. Betten. On the tensor function representations of 2nd-order and 4th-order tensors, part I. Zeitschrift für Angewandte Mathematik und Mechanik, 75:269–281, 1995.

    MATH  MathSciNet  Google Scholar 

  • Q.-S. Zheng and A. J. M. Spencer. Tensors which characterize anisotropics. International Journal of Engineering Science, 31(5):679–693, 1993.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 CISM, Udine

About this chapter

Cite this chapter

Ebbing, V., Schröder, J., Neff, P. (2010). Construction of polyconvex energies for non-trivial anisotropy classes. In: Schröder, J., Neff, P. (eds) Poly-, Quasi- and Rank-One Convexity in Applied Mechanics. CISM International Centre for Mechanical Sciences, vol 516. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0174-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0174-2_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0173-5

  • Online ISBN: 978-3-7091-0174-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics