Advertisement

Quasiconvex envelopes in nonlinear elasticity

  • Annie Raoult
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 516)

Abstract

We give several examples of modeling in nonlinear elasticity where a quasiconvexification procedure is needed. We first recall that the three-dimensional Saint Venant-Kirchhoff energy fails to be quasiconvex and that its quasiconvex envelope can be obtained by means of careful computations. Second, we turn to the mathematical derivation of slender structure models: an asymptotic procedure using T-convergence tools leads to models whose energy is quasiconvex by construction. Third, we construct an homogenized quasiconvex energy for square lattices.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. E. Acerbi and N. Fusco. Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal, 86:125–145, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  2. E. Acerbi, G. Buttazzo, and D. Percivale. A variational definition for the strain energy of an elastic string. J. Elasticity, 25:137–148, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  3. R. Alicandro and M. Cicalese. A general integral representation result for continuum limits of discrete energies with superlinear growth. SIAM J. Math. Anal., 36:1–37, 2004.zbMATHCrossRefMathSciNetGoogle Scholar
  4. O. Anza Hafsa and J.-Ph. Mandallena. The nonlinear membrane model: Variational derivation under the constraint det ∇u ≠ 0. J. Maths Pures Appl, 86:100–115, 2006.zbMATHMathSciNetGoogle Scholar
  5. E. Attouch. Variational Convergence for Functions and Operators. Pitman, 1984.Google Scholar
  6. J.M. Ball. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal, 63:337–403, 1977.zbMATHCrossRefGoogle Scholar
  7. M. Bousselsal and H. Le Dret. Relaxation of functionals involving homogeneous functions and invariance of envelopes. Chin. Ann. of Math., 23: 37–53, 2002.zbMATHCrossRefGoogle Scholar
  8. A. Braides and M.S. Gelli. Continuum limits of discrete sytems without convexity hypotheses. Math. Mech. Solids, 7:41–66, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  9. D. Caillerie, A. Mourad, and A. Raoult. Cell-to-muscle homogenization. Application to a constitutive law for the myocardium. Math. Model. Num. Anal, 37:681–698, 2003.zbMATHCrossRefMathSciNetGoogle Scholar
  10. D. Caillerie, A. Mourad, and A. Raoult. Discrete homogenization in graphene sheet modeling. J. Elas., 84:33–68, 2006.zbMATHCrossRefMathSciNetGoogle Scholar
  11. P.G. Ciarlet. Mathematical Elasticity. Vol I: Three-dimensional Elasticity. North-Holland, 1987.Google Scholar
  12. P.G. Ciarlet and Ph. Destuynder. A justification of the two-dimensional plate structure. J. Mécanique, 18:315–344, 1979.zbMATHMathSciNetGoogle Scholar
  13. B. Dacorogna. Direct Methods in the Calculus of Variations, 2nd edition. Springer, 2007.Google Scholar
  14. G. Dal Maso. An Introduction to Y-convergence. Birkäuser, 1993.Google Scholar
  15. E. De Giorgi and T. Franzoni. Su un tipo di convergenza variazionale. Atti. Accad. Naz. Lincei, 58:842–850, 1975.zbMATHGoogle Scholar
  16. I. Ekeland and R. Temam. Analyse Convexe et Problèmes Variationnels. Dunod, 1974.Google Scholar
  17. I. Fonseca and S. Müller. A-quasiconvexity, lower semicontinuity and Young measures. SIAM J. Math. Anal, 30:1355–1390, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  18. D. Fox, A. Raoult, and J.C. Simo. A justification of nonlinear properly invariant plate theories. Arch. Rational Mech. Anal., 124:157–199,1993.zbMATHCrossRefMathSciNetGoogle Scholar
  19. E. Friesecke, R.D. James, and S. Müller. A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity. Comm. Pure Appl. Math., 55:1461–1506, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  20. E. Friesecke, R.D. James, and S. Müller. A hierarchy of plate models derived from nonlinear elasticity by γ-convergence. Arch. Rational Mech. Anal, 180:183–236, 2006.zbMATHCrossRefGoogle Scholar
  21. H. Le Dret. Sur les fonctions de matrices convexes et isotropes. C.R. Acad. Sei. Paris, I, 310:617–620, 1990.zbMATHGoogle Scholar
  22. H. Le Dret and A. Raoult. Variational convergence for nonlinear shell models with directors and related semicontinuity and relaxation results. Arch. Rational Mech. Anal, 154:101–134, 2000.zbMATHCrossRefGoogle Scholar
  23. H. Le Dret and A. Raoult. Remarks on the quasiconvex envelope of stored energy functions in nonlinear elasticity. Comm. Applied Nonlinear An., 1:85–96, 1994.zbMATHGoogle Scholar
  24. H. Le Dret and A. Raoult. The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl, 75: 551–580, 1995a.Google Scholar
  25. H. Le Dret and A. Raoult. The quasiconvex envelope of the Saint Venant-Kirchhoff stored energy function. Proc. Roy. Soc. Edinburgh, 125A:1179–1192, 1995b.zbMATHGoogle Scholar
  26. H. Le Dret and A. Raoult. Quasiconvex envelopes of stored energy densities that are convex with respect to the strain tensor. In C. Bandle, J. Bemelmans, M. Chipot, J. Saint Jean Paulin, and I. Shafrir, editors, Progress in Partial Differential Equations. Pont-à-Mousson. 1994-Pitman, 1995c.Google Scholar
  27. C.B. Morrey. Quasiconvexity and the semicontinuity of multiple integrals. Pacific J. Math., 2:25–53, 1995.MathSciNetGoogle Scholar
  28. A. Mourad. Description Topologique de l’Architecture Fibreuse et Modélisation Mécanique du Myocarde. Doctoral dissertation, Institut National Polytechnique de Grenoble, 2003.Google Scholar
  29. O. Pantz. Quelques Problèmes de Modélisation en Elasticité non Linéaire. Doctoral dissertation, Université Pierre et Marie Curie, 2001.Google Scholar
  30. A.C. Pipkin. Convexity conditions for strain-dependent energy functions for membranes. Arch. Rational Mech. Anal, 121:361–376, 1993.CrossRefMathSciNetGoogle Scholar
  31. A.C. Pipkin. Relaxed energies for large deformations of membranes. IMA J. Appl. Math., 52:297–308, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  32. A. Raoult. Non-polyconvexity of the stored energy function of a Saint Venant-Kirchhoff material. Aplikace Matematiky, 31:417–419, 1986.zbMATHMathSciNetGoogle Scholar
  33. V. Sverak. Rank-one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edinburgh, 120A: 185–189, 1992.zbMATHMathSciNetGoogle Scholar
  34. R.C. Thompson and L.J. Freede. Eigenvalues of sums of hermitian matrices. J. Research Nat. Bur. Standards B, 75B:115–120, 1971.zbMATHGoogle Scholar

Copyright information

© CISM, Udine 2010

Authors and Affiliations

  • Annie Raoult
    • 1
  1. 1.Laboratoire MAP5Université Paris DescartesParisFrance

Personalised recommendations