Skip to main content

Field-Flow Fractionation for Assessing Biomolecular Interactions in Solution

  • Chapter
  • First Online:
Book cover Field-Flow Fractionation in Biopolymer Analysis

Abstract

Many biological systems are primarily governed by protein-protein interactions. It is important to develop sensitive analytical techniques to identify and characterize these bimolecular interactions in order to understand their fundamental roles in biological processes and in disease. In this book chapter, we summarize three case studies that applied asymmetrical flow field-flow fractionation (AF4) to access the protein-protein interactions of therapeutic proteins with their counterparts. These new applications of AF4 provide a unique and innovative tool that extends the bioanalytical capability to study protein complexes beyond micro-molar affinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piehler J (2005) New methodologies for measuring protein interactions in vivo and in vitro. Curr Opin Struct Biol 15(1):4–14

    Article  CAS  Google Scholar 

  2. Charbonnier S, Gallego O, Gavin A-C (2008) The social network of a cell: recent advances in interactome mapping. Biotechnol Annu Rev 14:1–28

    Article  CAS  Google Scholar 

  3. Jefferis R, Lund J (2002) Interaction sites on human IgG-Fc for FcgammaR: current models. Immunol Lett 82:57–65

    Article  CAS  Google Scholar 

  4. Hulett MD, Hogarth PM (1994) Molecular basis of Fc receptor function. Adv Immunol 57:1–127

    Article  CAS  Google Scholar 

  5. Cao S, Pollastrini J, Jiang Y (2009) Separation and characterization of protein aggregates and particles by field-flow fractionation. Curr Pharm Biotechnol 10:382–390

    Article  CAS  Google Scholar 

  6. Giddings JC (1993) Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials. Science 260:123–125

    Article  Google Scholar 

  7. Cohen-Solal JFG et al (2004) Fcγ receptors. Immunol Lett 92:199–205

    Article  CAS  Google Scholar 

  8. Murphy RM et al (2006) Self-association of therapeutic proteins. In: Misbehaving proteins. Springer, New York, pp 313–333

    Chapter  Google Scholar 

  9. Philo JS (1999) Overview of the quantitation of protein intercations. In: Current protocols in protein science. Wiley, New York, pp 20.1.1–20.1.13

    Google Scholar 

  10. Schuck P et al (1999) Sedimentation equilibrium analysis of recombinant mouse FcRn with murine IgG1. Mol Immunol 36:1117–1125

    Article  CAS  Google Scholar 

  11. Pollastrini J, Dillon TM, Bondarenko P, Chou RY-T (2011) Field-flow fractionation for assessing neonatal Fc receptor and Fcγ receptor binding to monoclonal antibodies in solution. Anal Biochem 414:88–98

    Article  CAS  Google Scholar 

  12. Anderson CL et al (2006) Perspective – FcRn transports albumin: relevance to immunology and medicine. Trends Immunol 27(7):343–348

    Article  CAS  Google Scholar 

  13. Lencer WI, Blumberg RS (2005) A passionate kiss, then run: exocytosis and recycling of IgG by FcRn. Trends Cell Biol 15(1):5–9

    Article  CAS  Google Scholar 

  14. Salfeld JG (2007) Isotype selection in antibody engineering. Nat Biotechnol 25(12):1369–1372

    Article  CAS  Google Scholar 

  15. Nimmerjahn F, Ravetch JV (2008) Fc[gamma] receptors as regulators of immune responses. Nat Rev Immunol 8(1):34–47

    Article  CAS  Google Scholar 

  16. Raghavan M, Bjorkman PJ (1996) Fc receptors and their interactions with immunoglobulins. Annu Rev Cell Dev Biol 12(1):181–220

    Article  CAS  Google Scholar 

  17. Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7(9):715–725

    Article  CAS  Google Scholar 

  18. Chaudhury C et al (2006) Albumin binding to FcRn: distinct from the FcRn-IgG interaction. Biochemistry 45(15):4983–4990

    Article  CAS  Google Scholar 

  19. Vaughn DE, Bjorkman PJ (1997) High-affinity binding of the neonatal Fc receptor to its IgG ligand requires receptor immobilization. Biochemistry 36:9374

    Article  CAS  Google Scholar 

  20. Andersen JT, Dee Qian J, Sandlie I (2006) The conserved histidine 166 residue of the human neonatal Fc receptor heavy chain is critical for the pH-dependent binding to albumin. Eur J Immunol 36(11):3044–3051

    Article  CAS  Google Scholar 

  21. Firan M et al (2001) The MHC class I-related receptor, FcRn, plays an essential role in the maternofetal transfer of {gamma}-globulin in humans. Int Immunol 13(8):993–1002

    Article  CAS  Google Scholar 

  22. West AP, Bjorkman PJ (2000) Crystal structure and immunoglobulin G binding properties of the human major histocompatibility complex-related Fc receptor. Biochemistry 39(32):9698–9708

    Article  CAS  Google Scholar 

  23. Martin WL, Bjorkman PJ (1999) Characterization of the 2:1 complex between the class I MHC-related Fc receptor and its Fc ligand in solution. Biochemistry 38:12639

    Article  CAS  Google Scholar 

  24. Raghavan M et al (1995) Analysis of the pH dependence of the neonatal Fc receptor/immunoglobulin G interaction using antibody and receptor variants. Biochemistry 34(45):14649–14657

    Article  CAS  Google Scholar 

  25. Rodewald R (1976) pH-dependent binding of immunoglobulins to intestinal cells of the neonatal rat. J Cell Biol 71(2):666–669

    Article  CAS  Google Scholar 

  26. Popov S et al (1996) The stoichiometry and affinity of the interaction of murine Fc fragments with the MHC class I-related receptor, FcRn. Mol Immunol 33(6):521–530

    Article  CAS  Google Scholar 

  27. Junghans RP, Anderson CL (1996) The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad Sci USA 93(11):5512–5516

    Article  CAS  Google Scholar 

  28. Chaudhury C et al (2003) The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J Exp Med 197:315

    Article  CAS  Google Scholar 

  29. Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li DS, Mehrbod F, Jaskunas SR, Shanafelt AB (2005) FGF-21 as a novel metabolic regulator. J Clin Invest 115:1627–1635

    Article  CAS  Google Scholar 

  30. Xu J, Stanislaus S, Chinookoswong N, Lau YY, Hager T, Patel J, Ge H, Weiszmann J, Lu SC, Graham M, Busby J, Hecht R, Li YS, Li Y, Lindberg RA, Veniant MM (2009) Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin resistant mouse models––association with liver and adipose tissue effects. Am J Physiol 297:E1105–E1114

    CAS  Google Scholar 

  31. Kharitonenkov A, Wroblewski VJ, Koester A, Chen YF, Clutinger CK, Tigno XT, Hansen BC, Shanafelt AB, Etgen GJ (2007) The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148:774–781

    Article  CAS  Google Scholar 

  32. Kharitonenkov A, Dunbar JD, Bina HA, Bright S, Moyers JS, Zhang C, Ding L, Micanovic R, Mehrbod SF, Knierman MD, Hale JE, Coskun T, Shanafelt A (2008) FGF-21/FGF-21 receptor interaction and activation is determined by beta Klotho. J Cell Physiol 215:1–7

    Article  CAS  Google Scholar 

  33. Yie J, Hecht R, Patet J, Stevens J, Wang W, Hawkins N, Steavenson S, Smith S, Winters D, Fisher S, Cai L, Belouski E, Ching C, Michaels M, Li Y, Lindberg R, Wang M, Veniant M, Xu J (2009) FGF21 N- and C-termini play different roles in receptor interaction and activation. FEBS Lett 583:19–24

    Article  CAS  Google Scholar 

  34. Park I et al (2002) Separation and selective detection of lipoprotein particles of patients with coronary artery disease by frit-inlet asymmetrical flow field-flow fractionation. J Chromatogr B 780(2):415–422

    Article  CAS  Google Scholar 

  35. Rambaldi DC et al (2007) An analytical method for size and shape characterization of blood lipoproteins. Clin Chem 53(11):2026–2029

    Article  CAS  Google Scholar 

  36. Park I et al (2005) Performance of hollow-fiber flow field-flow fractionation in protein separation. J Sep Sci 28(16):2043–2049

    Article  CAS  Google Scholar 

  37. Madörin M et al (1997) Analysis of drug/plasma protein interactions by means of asymmetrical flow field-flow fractionation. Pharm Res 14(12):1706–1712

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Y. -T. Chou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Chou, R.YT. et al. (2012). Field-Flow Fractionation for Assessing Biomolecular Interactions in Solution. In: Williams, S., Caldwell, K. (eds) Field-Flow Fractionation in Biopolymer Analysis. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0154-4_8

Download citation

Publish with us

Policies and ethics