Skip to main content
  • 2742 Accesses

Abstract

Historically, the prime goal of drug development has been the development of a blockbuster drug, i.e. a drug generating more than $1 billion of revenue for its owner (Fig. 1). Classical examples of blockbuster classes of drugs are the statins, non-steroidal anti-inflammatory drugs (NSAIDs) or proton pump inhibitors (PPIs), which can be prescribed to millions of patients for a broad variety of disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clinton HR, Obama B (2006) Making patient safely the centerpiece of medical liability reform. NEJM 354: 2205–2208

    Article  PubMed  CAS  Google Scholar 

  2. The Presidential Council of Advisors on Science and Technology (PCAST) (2008) Report on Personalized Medicine. http://www.ostp.gov/galleries/PCAST/pcast_report_v2.pdf

  3. Müller M, Müller-Zellenberg U, Hochhaus G, Derendorf H (2001) Current concepts in clinical pharmacokinetics and their implications for clinical medicine. Wien Klin Wochenschr 113: 566–572

    PubMed  Google Scholar 

  4. Waite AE (1894) The Hermetic and Alchemical Writings of Aureolus Philippus Theophrastus Bombast of Hohenheim Called Paracelsus the Great, Vol. 2. Elliott & Co., London

    Google Scholar 

  5. Ober KP (1997) The Pre-Flexnerian reports: Mark Twain’s criticism of medicine in the United States. Ann Intern Med 126: 157–163

    PubMed  CAS  Google Scholar 

  6. Sheiner LB, Tozer TN (1978) Clinical pharmacokinetics: the use of plasma concentrations of drugs. In: Melmon KL, Morelli HF (eds.) Clinical pharmacology: basic principles of therapeutics. MacMillan, New York, pp. 71–109

    Google Scholar 

  7. Evans WE, Relling MV, Rodman JH, Crom WR, Boyett JM, Pui CH (1998) Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N Engl J Med 338(8): 499–505

    Article  PubMed  CAS  Google Scholar 

  8. Müller M (2003) Pharmacogenomics and drug response. Int J Clin Pharmacol Ther 41(6): 231–240

    PubMed  Google Scholar 

  9. Motulsky AG (1957) Drug reactions, enzymes and biochemical genetics. JAMA 165: 835–836

    CAS  Google Scholar 

  10. Vesell ES, Page JG (1968) Genetic control of drug levels in man: antipyrine. Science 161(836): 72–73

    Article  PubMed  CAS  Google Scholar 

  11. Vesell ES, Page JG (1968) Genetic control of drug levels in man: phenylbutazone. Science 159(822): 1479–1480

    Article  PubMed  CAS  Google Scholar 

  12. Vesell ES (2000) Advances in pharmacogenetics and pharmacogenomics. J Clin Pharmacol 40(9): 930–938

    Article  PubMed  CAS  Google Scholar 

  13. Carsen PE, Flanagan CL, Iokes CE, Alving AS (1956) Enzymatic deficiency in primaquine-sensitive erythrocytes. Science 124: 484–485

    Article  Google Scholar 

  14. Relling MV, Hancock ML, Rivera GK, Sandlund JT, Ribeiro RC, Krynetski EY, Pui CH, Evans WE (1999) Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltrans-ferase gene locus. J Natl Cancer Inst 91(23): 2001–2089

    Article  PubMed  CAS  Google Scholar 

  15. Mancinelli L, Cronin M, Sadee W (2000) Pharmacogenomics: The Promise of Personalized Medicine. (http://www.pharmsci.Org/ScientificJournals/pharmsci/journal/4.html) AAPS Pharmsci 2(1): article 4

  16. Dollery CT (2007) Beyond genomics. Clin Pharmacol Ther 82(4): 366–370

    Article  PubMed  CAS  Google Scholar 

  17. The Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447: 661–678

    Article  Google Scholar 

  18. Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hörtnagel K, Pelz HJ, Lappegard K, Seifried E, Scharrer I, Tuddenham EG, Müller CR, Strom TM, Oldenburg J (2004) Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 427(6974): 537–541

    Article  PubMed  CAS  Google Scholar 

  19. International Warfarin Pharmacogenetics Consortium, Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee MT, Limdi NA, Page D, Roden DM, Wagner MJ, Caldwell MD, Johnson JA (2009) Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 360(8): 753–764. Erratum in: N Engl J Med 2009 361(16): 1613 (Dosage error in article text)

    Article  Google Scholar 

  20. Michiels S, Koscielny S, Hill C (2005) Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365(9458): 488–492

    Article  PubMed  CAS  Google Scholar 

  21. Trusheim MR, Berndt ER, Douglas FL (2007) Stratified medicine: strategic and economic implications of combining drugs and clinical biomarkers. Nat Rev Drug Discov 6(4): 287–293

    Article  PubMed  CAS  Google Scholar 

  22. Arnett DK, Claas SA, Lynch AI (2009) Has pharmacogenetics brought us closer to ‘personalized medicine’ for initial drug treatment of hypertension? Curr Opin Cardiol 24: 333–339

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this chapter

Cite this chapter

Müller, M. (2010). Individualized medicine. In: Müller, M. (eds) Clinical Pharmacology: Current Topics and Case Studies. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0144-5_22

Download citation

Publish with us

Policies and ethics