Skip to main content

Pharmacokinetics I: PK-PD approaches - antibiotic drug development

  • Chapter
Clinical Pharmacology: Current Topics and Case Studies

Abstract

The success of antibiotic therapy depends on complex interplay between the administered drug, its mechanism of action, concentration at site of infection, and complexity or severity of infection. Therapeutic response to an anti-infective agent or its pharmacological effect is often associated with high variability in clinical situations. Pharmacokinetics (PK) and pharmacodynamics (PD) contribute to a better understanding of the relationship between drug concentrations in biological fluids and its pharmacological effect. PK-PD studies can provide a means for exploring important pharmacological and toxicological properties of a drug in animals and humans. An integrated PK-PD approach, linking the exposure of a drug and the modulation of pharmacological targets, physiological pathways and ultimately disease systems, can be used to develop unified understanding of the data collected during different stages of drug discovery, which can also be applied in the drug development process. PK-PD relationships can be expressed by numerous mathematical models which have been increasingly demonstrated to be predictive of therapeutic outcomes during the development process. The PK-PD modelling and simulation approaches can streamline drug development and help make crucial decisions. These decisions include but not limited to planning clinical trials and designing optimal dosing strategies, both of which can be extremely costly and critical to the compound being developed if incorrect decisions are made. The purpose of this chapter is to discuss how PK-PD correlations and modelling and simulation process can be applied to drug development emphasizing antibiotic drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sheiner LB, Stanski DR, Vozeh S, Miller RD, Ham J (1979) Simultaneous modelling of pharmacokinetics and pharmacodynamics: application to D-tubocurarine. Clin Pharmacol Ther 25: 358–371

    PubMed  CAS  Google Scholar 

  2. Breimer DD (2008) PK/PD modelling and beyond: impact on drug development. Pharm Res 25: 2720–2722

    Article  PubMed  CAS  Google Scholar 

  3. Danhof M, de Jongh J, de Lange ECM, Pasqua OD, Ploeger BA, Voskuyl RA (2007) Mechanismbased pharmacokinetic-pharmacodynamic modelling: biophase distribution, receptor theory and dynamical systems analysis. Annu Rev Pharmacol Toxicol 47: 357–400

    Article  PubMed  CAS  Google Scholar 

  4. Liu P, Muller M, Derendorf H (2002) Rational dosing of antibiotics: the use of plasma concentrations versus tissue concentrations. Int J Antimicrob Agents 19: 285–290

    Article  PubMed  CAS  Google Scholar 

  5. FDA-CDER (1997) Guidance for industry — evaluating clinical studies of antimicrobials in the division of anti-infective drug products: FDA

    Google Scholar 

  6. Chaurasia CS, Muller M, Bashaw ED, et al. (2007) AAPS-FDA workshop white paper: microdialysis principles, application, and regulatory perspectives. J Clin Pharmacol 47: 589–603

    Article  PubMed  CAS  Google Scholar 

  7. Schmidt S, Banks R, Kumar V, Rand KH, Derendorf H (2008) Clinical microdialysis in skin and soft tissues: an update. J Clin Pharmacol 48: 351–364

    Article  PubMed  CAS  Google Scholar 

  8. Lonnroth P, Jansson PA, Smith U (1987) A microdialysis method allowing characterization of intercellular water space in humans. Am J Physiol 253: E228–E231

    PubMed  CAS  Google Scholar 

  9. Olson RJ, Justice JB Jr. (1993) Quantitative microdialysis under transient conditions. Anal Chem 65: 1017–1022

    Article  PubMed  CAS  Google Scholar 

  10. Burkhardt O, Brunner M, Schmidt S, Grant M, Tang Y, Derendorf H (2006) Penetration of ertapenem into skeletal muscle and subcutaneous adipose tissue in healthy volunteers measured by in vivo microdialysis. J Antimicrob Chemother 58: 632–636

    Article  PubMed  CAS  Google Scholar 

  11. Stahl M, Bouw R, Jackson A, et al. (2002) Human microdialysis. Curr Pharm Biotechnol 3: 165–178

    Article  PubMed  CAS  Google Scholar 

  12. Davies MI, Cooper JD, Desmond SS, Lunte CE, Lunte SM (2000) Analytical considerations for microdialysis sampling. Adv Drug Deliv Rev 45: 169–188

    Article  PubMed  CAS  Google Scholar 

  13. Engstrom M, Polito A, Reinstrup P, et al. (2005) Intracerebral microdialysis in severe brain trauma: the importance of catheter location. J Neurosurg 102: 460–469

    Article  PubMed  Google Scholar 

  14. Ederoth P, Tunblad K, Bouw R, et al. (2004) Blood-brain barrier transport of morphine in patients with severe brain trauma. Br J Clin Pharmacol 57: 427–435

    Article  PubMed  CAS  Google Scholar 

  15. Herkner H, Muller MR, Kreischitz N, et al. (2002) Closed-chest microdialysis to measure antibiotic penetration into human lung tissue. Am J Respir Crit Care Med 165: 273–276

    PubMed  Google Scholar 

  16. Tomaselli F, Maier A, Matzi V, et al. (2004) Penetration of meropenem into pneumonic human lung tissue as measured by in vivo microdialysis. Antimicrob Agents Chemother 48: 2228–2232

    Article  PubMed  CAS  Google Scholar 

  17. Thorsen K, Kristoffersson AO, Lerner UH, et al. (1996) In situ microdialysis in bone tissue. Stimulation of prostaglandin E2 release by weight-bearing mechanical loading. J Clin Invest 98: 2446–2449

    CAS  Google Scholar 

  18. Bahlmann L, Misfeld M, Klaus S, et al. (2004) Myocardial redox state during coronary artery bypass grafting assessed with microdialysis. Intensive Care Med 30: 889–894

    Article  PubMed  Google Scholar 

  19. Nowak G, Ungerstedt J, Wernerman J, et al. (2002) Clinical experience in continuous graft monitoring with microdialysis early after liver transplantation. Br J Surg 89: 1169–1175

    Article  PubMed  CAS  Google Scholar 

  20. Jansson K, Jansson M, Andersson M, et al. (2005) Normal values and differences between intraperitoneal and subcutaneous microdialysis in patients after non-complicated gastrointestinal surgery. Scand J Clin Lab Invest 65: 273–281

    Article  PubMed  CAS  Google Scholar 

  21. Müller M (2002) Science, medicine and the future: microdialysis. BMJ 324: 588–591

    Article  PubMed  Google Scholar 

  22. Muller M, Penadela A, Derendorf H (2004) Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: distribution in tissue. Antimicrob Agents Chemother 48: 1441–1453

    Article  PubMed  Google Scholar 

  23. Brunner M, Derendorf H, Muller M (2005) Microdialysis for in vivo pharmacokinetic/pharmacodynamic characterization of anti-infective drugs. Curr Opin Pharmacol 5: 495–499

    Article  PubMed  CAS  Google Scholar 

  24. CPMP (1999) Points to consider on pharmacokinetics and pharmacodynamics in the development of antibacterial medicinal products. In: Evaluation of Medicines for Human Use. The European Agency for the Evaluation of Medicinal Products, London, UK, pp 1–7

    Google Scholar 

  25. Palmer SM, Kang SL, Cappelletty DM, Rybak MJ (1995) Bactericidal killing activities of cefepime, ceftazidime, cefotaxime, and ceftriaxone against Staphylococcus aureus and b-lactamase-produ-cing strains of Enterobacter aerogenes and Klebsiella pneumonia in an in vitro infection model. Antimicrob Agents Chemother 39: 1764–1771

    PubMed  CAS  Google Scholar 

  26. Firsov AA, Vostrov SN, Shevchenko AA, Portnoy YA, Zinner SH (1998) A new approach to in vitro comparisons of antibiotics in dynamic models: equivalent area under the curve/MIC breakpoints and equiefficient doses of trovafloxacin and ciprofloxacin against bacteria of similar susceptibilities. Antimicrob Agents Chemother 42: 2841–2847

    PubMed  CAS  Google Scholar 

  27. Gloede J, Scheerans C, Derendorf H, Kloft C (2010) In vitro pharmacodynamic models to determine the effect of antibacterial drugs. J Antimicrob Chemother 65: 186–201

    Article  PubMed  CAS  Google Scholar 

  28. Mueller M, de la Pena A, Derendorf H (2004) Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: kill curves versus MIC. Antimicrob Agents Chemother 48: 369–377

    Article  PubMed  CAS  Google Scholar 

  29. Derendorf H, Hochhaus G (1995) Handbook of Pharmacokinetic/Pharmacodynamic Correlation. CRC Press Inc., Boca Raton, FL

    Google Scholar 

  30. Blaser J, Stone BB, Zinner SH (1985) Two compartment kinetic model with multiple artificial capillary units. J Antimicrob Chemother 15(Suppl A): 131–137

    PubMed  CAS  Google Scholar 

  31. Mouton JW, den Hollander JG (1994) Killing of Pseudomonas aeruginosa during continuous and intermittent infusion of ceftazidime in an in vitro pharmacokinetic model. Antimicrob Agents Chemother 38: 931–936

    PubMed  CAS  Google Scholar 

  32. Nolting A, Dalla Costa T, Rand KH, Derendorf H (1996) Pharmacokinetic/pharmacodynamic modelling of the antibiotic effect of piperacillin in vitro. Pharm Res 13: 91–96

    Article  PubMed  CAS  Google Scholar 

  33. Dalla Costa T, Nolting A, Rand K, Derendorf H (1997) Pharmacokinetic/pharmacodynamic modelling of the in vitro antiinfective effect of piperacillin/tazobactam combinations. Int J Clin Pharmacol Ther 35: 426–433

    PubMed  CAS  Google Scholar 

  34. Grasso S, Meinardi G, de Carneri I, et al. (1978) New in vitro model to study the effect of antibiotic concentration and rate of elimination on antibacterial activity. Antimicrob Agents Chemother 13: 570–576

    PubMed  CAS  Google Scholar 

  35. Wang L, Wismer MK, Racine F, et al. (2008) Development of an integrated semi-automated system for in vitro pharmacodynamic modelling. J Antimicrob Chemother 62: 1070–1077

    Article  PubMed  CAS  Google Scholar 

  36. Schmidt S, Barbour A, Sahre M, Rand KH, Derendorf H (2008) PK-PD: new insights for antibacterial and antiviral applications. Curr Opinion Pharmacol 8: 549–556

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this chapter

Cite this chapter

Sabarinath, S.N., Singh, R.P., Derendorf, H. (2010). Pharmacokinetics I: PK-PD approaches - antibiotic drug development. In: Müller, M. (eds) Clinical Pharmacology: Current Topics and Case Studies. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0144-5_10

Download citation

Publish with us

Policies and ethics