Skip to main content

Photosynthesis and Antioxidative Protection in Alpine Herbs

  • Chapter
  • First Online:
Plants in Alpine Regions

Abstract

Alpine environments are found all over the world, from the south over the tropics to the north. Alpine herbs are defined here as higher plant species growing above the tree line up to and within the persisting snow line (nival life zone). The altitude of their occurrence varies strongly from around sea level in the far north and south to elevations above 4,000–5,000 m.a.s.l. in Africa and the Himalaya (Körner 2003). In the European Alps the alpine life zone starts at approximately 2,000 m elevation, depending on local microclimatic conditions. The mean annual air temperature in the Alps at this elevation is approximately 0°C (Friend and Woodward 1990) and on average the vegetation period is limited to 5 months per year.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APx:

Ascorbate peroxidase

Ca :

Concentration of CO2 outside the leaf

Cc :

Concentration of CO2 at the chloroplast level

Ci :

Concentration of CO2 inside the leaf

Car:

Carotenoid

Chl:

Chlorophyll

gCO2 :

Conductance for CO2

LHC:

Light harvesting complex

m.a.s.l.:

Meter above sea level

NPQ, qN:

Non-photochemical fluorescence quenching (for details see Maxwell and Johnson 2000)

PFD:

Photon flux density

PS:

Photosystem

PTOX:

Plastid terminal oxidase

qP:

Photochemical fluorescence quenching

ROS:

Reactive oxygen species

SCO2/O2 :

Specificity factor of Rubisco for CO2 relative to O2

SOD:

Superoxide dismutase

References

  • Aluru MR, Stessman DJ, Spalding MH, Rodermel SR (2007) Alterations in photosynthesis in Arabidopsis lacking immutans, a chloroplast terminal oxidase. Photosynth Res 91:11–23

    PubMed  CAS  Google Scholar 

  • Anderson JM, Osmond CB (1987) Shade-sun responses: compromises between acclimation and photoinhibition. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition. Elsevier, New York, pp 1–37

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399

    CAS  Google Scholar 

  • Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    PubMed  CAS  Google Scholar 

  • Asada K (1996) Radical production and scavenging in the chloroplasts. In: Baker NR (ed) Advances in photosynthesis, Vol. 5: photosynthesis and the environment. Kluwer Academic Publishers, Dordrecht, pp 123–150

    Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Ann Rev Plant Physiol Plant Mol Biol 50:601–639

    CAS  Google Scholar 

  • Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343–351

    PubMed  CAS  Google Scholar 

  • Backhausen JE, Kitzmann C, Horton P, Scheibe R (2000) Electron acceptors in isolated intact spinach chloroplasts act hierarchically to prevent over-reduction and competition for electrons. Photosynth Res 64:1–13

    PubMed  CAS  Google Scholar 

  • Bailey S, Walters RG, Jansson S, Horton P (2001) Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213:794–801

    PubMed  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Ann Rev Plant Biol 59:89–113

    CAS  Google Scholar 

  • Berry J, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Ann Rev Plant Physiol 31:491–543

    Google Scholar 

  • Bird M, Haberle S, Chivas A (1994) Effect of the altitude on the carbon-isotope composition of forest and grassland soils from Papua New Guinea. Global Biogeochem Cycles 8:13–22

    CAS  Google Scholar 

  • Bravo LA, Saavedra-Mella FA, Vera F, Guerra A, Cavieres LA, Ivanov A, Huner NPA, Corcuera LJ (2007) Effect of cold acclimation on the photosynthetic performance of two ecotypes of Colobanthus quitensis (Kunth) Bartl. J Exp Bot 58:3581–3590

    PubMed  CAS  Google Scholar 

  • Buchner O, Holzinger A, Lütz C (2007) Effects of temperature and light on the formation of chloroplast protrusions in leaf mesophyll cells of high alpine plants. Plant Cell Environ 30:1347–1356

    PubMed  CAS  Google Scholar 

  • Busch F, Hüner NPA, Ensminger I (2008) Increased air temperature during simulated autumn conditions impairs photosynthetic electron transport between photosystem II and photosystem I. Plant Physiol 147:402–414

    PubMed  CAS  Google Scholar 

  • Cabrera HM, Rada F, Cavieres L (1998) Effects of temperature on photosynthesis of two morphologically contrasting plant species along an altitudinal gradient in the tropical high Andes. Oecologia 114:145–152

    Google Scholar 

  • Carol P, Kuntz M (2001) A plastid terminal oxidase comes to light: implications for carotenoid biosynthesis and chlororespiration. Trends Plant Sci 6:31–36

    PubMed  CAS  Google Scholar 

  • Cartellieri E (1940) Über die Transpiration und Kohlensäureassimilation an einem hochalpinen Standort. Sitzungsberichte der mathematisch-naturwissenschaftlichen Klasse Abteilung I 149:95–143

    Google Scholar 

  • Castrillo M (1995) Ribulose-1.5-bis-phosphate carboxylase activity in altitudinal populations of Espeletia schultzii Wedd. Oecologia 101:193–196

    Google Scholar 

  • Cordell S, Goldstein G, Meinzer FC, Handley LL (1999) Allocation of nitrogen and carbon in leaves of Metrosideros polymorpha regulates carboxylation capacity and δ13C along an altitudinal gradient. Funct Ecol 13:811–818

    Google Scholar 

  • Cournac L, Latouche G, Cerovic Z, Redding K, Ravenel J, Peltier G (2002) In vivo interactions between photosynthesis, mitorespiration, and chlororespiration in Chlamydomonas reinhardtii. Plant Physiol 129:1921–1928

    PubMed  CAS  Google Scholar 

  • Demmig-Adams B (1998) Survey of thermal energy dissipation and pigment composition in sun and shade leaves. Plant Cell Physiol 39:474–482

    CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (1992a) Photoprotection and other responses of plants to high light stress. Ann Rev Plant Physiol Plant Mol Biol 99:599–626

    Google Scholar 

  • Demmig-Adams B, Adams WW III (1992b) Carotenoid composition in sun and shade leaves of plants with different life forms. Plant Cell Environ 15:411–419

    CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21

    PubMed  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III, Heber U, Neimanis S, Winter K, Krüger A, Czygan FC, Bilger W, Björkman O (1990) Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by dithiothreitol in spinach leaves and chloroplasts. Plant Physiol 92:293–301

    PubMed  CAS  Google Scholar 

  • Diaz M, De Haro V, Munoz R, Quiles MJ (2007) Chlororespiration is involved in the adaptation of Brassica plants to heat and high light intensity. Plant Cell Environ 30:1578–1585

    PubMed  CAS  Google Scholar 

  • Diemer M, Körner Ch (1996) Lifetime leaf carbon balances of herbaceous perennial plants from low and high altitudes in the central Alps. Funct Ecol 10:33–43

    Google Scholar 

  • Engel N, Schmidt M, Lütz C, Feierabend J (2006) Molecular identification, heterologous expression and properties of light-insensitive plant catalases. Plant Cell Environ 29:593–607

    PubMed  CAS  Google Scholar 

  • Epron D, Godard D, Cornic G, Genty B (1995) Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.). Plant Cell Environ 18:43–51

    Google Scholar 

  • Evans JR, Loreto F (2000) Acquisition and diffusion of CO2 in higher plant leaves. In: Leegood RC, Sharkey TD, von Caemmerer S (eds) Photosynthesis: physiology and metabolism, vol 9. Kluwer Academic Publishers, Dordrecht/Boston/London, pp 332–351

    Google Scholar 

  • Evans JR, Kaldenhoff R, Genty B, Terashima I (2009) Resistances along the CO2 diffusion pathway inside leaves. J Exp Bot 60:2235–2248

    PubMed  CAS  Google Scholar 

  • Falk S, Maxwell DP, Laudenbach DE, Huner NPA (1996) Photosynthetic adjustment to temperature. In: Baker NR (ed) Photosynthesis and the environment, vol 5. Kluwer Academic Publishers, Dordrecht, pp 367–385

    Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Ann Rev Plant Physiol 33:317–345

    CAS  Google Scholar 

  • Feierabend J (2005) Catalases in plants: molecular and functional properties and role in stress defence. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell Publishers, Oxford, pp 101–140

    Google Scholar 

  • Feierabend J, Schaan C, Hertwig B (1992) Photoinactivation of catalase occurs under both high- and low-temperature stress conditions and accompanies photoinhibition of PSII. Plant Physiol 100:1554–1561

    PubMed  CAS  Google Scholar 

  • Fetene M, Nauke P, Lüttge U, Beck E (1997) Photosynthesis and photoinhibition in a tropical alpine giant rosette plant, Lobelia rhynchopetalum. New Phytol 137:453–461

    CAS  Google Scholar 

  • Finazzi G, Johnson GN, Dallosto L, Joliot P, Wollman F-A, Bassi R (2004) A zeaxanthin-independent nonphotochemical quenching mechanism localized in the photosystem II core complex. Proc Natl Acad Sci USA 101:12375–12380

    PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    CAS  Google Scholar 

  • Friend AD, Woodward FI (1990) Evolutionary and ecophysiological responses of mountain plants to the growing season environment. Adv Ecol Res 20:59–124

    Google Scholar 

  • Gauslaa Y (1984) Heat resistance and energy budget in different scandinavian plants. Hol Ecol 7:1–78

    Google Scholar 

  • Germino MJ, Smith WK (2000) High resistance to low-temperature photoinhibition in two alpine, snowbank species. Physiol Plant 110:89–95

    CAS  Google Scholar 

  • Germino MJ, Smith WK (2001) Relative importance of microhabitat, plant form and photosynthetic physiology to carbon gain in two alpine herbs. Funct Ecol 15:243–251

    Google Scholar 

  • Goldstein G, Drake DR, Melcher P, Giambelluca TW, Heraux J (1996) Photosynthetic gas exchange and temperature-induced damage in seedlings of the tropical alpine species Argyroxiphium sandwicense. Oecologia 106:298–307

    Google Scholar 

  • Guo F-X, Zhang M-X, Chen Y, Zhang W-H, Xu S-J, Wang J-H, An L-Z (2006) Relation of several antioxidant enzymes to rapid freezing resistance in suspension cultured cells from alpine Chorispora bungeana. Cryobiology 52:241–250

    PubMed  CAS  Google Scholar 

  • Hacker J, Neuner G (2006) Photosynthetic capacity and PSII efficiency of the evergreen alpine cushion plant Saxifraga paniculata during winter at different altitudes. Arct Antarct Alp Res 38:198–205

    Google Scholar 

  • Haldimann P, Feller U (2004) Inhibition of photosynthesis by high temperature in oak (Quercus pubescence L.) leaves grown under natural conditions closely correlates with a reversible heat-dependent reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Cell Environ 27:1169–1183

    CAS  Google Scholar 

  • Havaux M, Dall’Osto L, Bassi R (2007) Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding of PSII antennae. Plant Physiol 145:1506–1520

    PubMed  CAS  Google Scholar 

  • Heber U, Bligny R, Streb P, Douce R (1996) Photorespiration is essential for the protection of the photosynthetic apparatus of C3 plants against photoinactivation under sunlight. Bot Acta 109:307–315

    CAS  Google Scholar 

  • Heber U, Bilger W, Bligny R, Lange OL (2000) Phototolerance of lichens, mosses and higher plants in an alpine environment: analysis of photoreactions. Planta 211:770–780

    PubMed  CAS  Google Scholar 

  • Henrici M (1918) Chlorophyllgehalt und Kohlensäure-Assimilation bei Alpen- und Ebenen-Pflanzen. Verh naturforsch Ges Basel 30:43–134

    Google Scholar 

  • Heyno E, Gross CM, Laureau C, Culcasi M, Pietri S, Krieger-Liszkay A (2009) Plastid alternative oxidase (PTOX) promotes oxidative stress when overexpressed in tobacco. J Biol Chem 284:31174–31180

    PubMed  CAS  Google Scholar 

  • Huner NPA, Elfman B, Krol M, McIntosh A (1984) Growth and development at cold-hardening temperatures. Chloroplast ultrastructure, pigment content, and composition. Can J Bot 62:53–60

    CAS  Google Scholar 

  • Huner NPA, Öquist G, Hurry VM, Krol M, Falk S, Griffith M (1993) Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynth Res 37:19–39

    CAS  Google Scholar 

  • Huner NPA, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230

    Google Scholar 

  • Hurry VM, Malmberg G, Gardeström P, Öquist G (1994) Effects of a short-term shift to low temperature and of long-term cold hardening on photosynthesis and ribulose-1.5-bisphosphate carboxylase/oxygenase and sucrose phosphate synthase activity in leaves of winter rye (Secale cereale L.). Plant Physiol 106:983–990

    PubMed  CAS  Google Scholar 

  • Hurry VM, Keerberg O, Pärnik T, Gardeström P, Öquist G (1995) Cold-hardening results in increased activity of enzymes involved in carbon metabolism in leaves of winter rye (Secale cereale L.). Planta 195:554–562

    CAS  Google Scholar 

  • Hurry V, Strand Å, Furbank R, Stitt M (2000) The role of inorganic phosphate in the development of freezing tolerance and the acclimatization of photosynthesis to low temperature is revealed by the pho mutants of Arabidopsis thaliana. Plant J 24:383–396

    PubMed  CAS  Google Scholar 

  • Joliot P, Joliot A (2002) Cyclic electron transfer in plant leaf. Proc Natl Acad Sci USA 99:10209–10214

    PubMed  CAS  Google Scholar 

  • Jordan DB, Ogren WL (1984) The CO2/O2 specificity of ribulose 1.5-bisphosphate carboxylase/oxygenase. Planta 161:308–313

    CAS  Google Scholar 

  • Keeley JE, Keeley SC (1989) Crassulacean acid metabolism (CAM) in high elevation tropical cactus. Plant Cell Environ 12:331–336

    CAS  Google Scholar 

  • Kleier C, Rundel P (2009) Energy balance and temperature relations of Azorella compacta, a high-elevation cushion plant of the central Andes. Plant Biol 11:351–358

    PubMed  CAS  Google Scholar 

  • Kogami H, Hanba YT, Kibe T, Terashima I, Masuzawa T (2001) CO2 transfer conductance, leaf structure and carbon isotope composition of P. cuspidatum leaves from low and high altitudes. Plant Cell Environ 24:529–538

    CAS  Google Scholar 

  • Körner Ch (1982) CO2 exchange in the alpine sedge Carex curvula as influenced by canopy structure, light and temperature. Oecologia 53:98–104

    Google Scholar 

  • Körner C (2003) Alpine plant life. Functional plant ecology of high mountain ecosystems. Springer Verlag, Berlin/Heidelberg

    Google Scholar 

  • Körner Ch, Diemer M (1987) In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Funct Ecol 1:179–194

    Google Scholar 

  • Körner Ch, Farquhar GD, Wong SC (1991) Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia 88:30–40

    Google Scholar 

  • Krause GH, Cornic G (1987) CO2 and O2 interactions in photoinhibition. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition. Elsevier, New York, pp 169–196

    Google Scholar 

  • Krieger-Liszkay A, Fufezan C, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res 98:551–564

    PubMed  CAS  Google Scholar 

  • Kruk J, Holländer-Czytko H, Oettmeier W, Trebst A (2005) Tocopherol as singlet oxygen scavenger in photosystem II. J Plant Physiol 162:749–757

    PubMed  CAS  Google Scholar 

  • Kumar N, Kumar S, Ahuja PS (2005) Photosynthetic characteristics of Hordeum, Triticum, Rumex and Trifolium species at contrasting altitude. Photosynthetica 43:195–201

    CAS  Google Scholar 

  • Kumar N, Kumar S, Vats SK, Ahuja PS (2006) Effect of altitude on the primary products of photosynthesis and the associated enzymes in barley and wheat. Photosynth Res 88:63–71

    PubMed  CAS  Google Scholar 

  • Kumar N, Vyas D, Kumar S (2007) Plants at high altitude exhibit higher component of alternative respiration. J Plant Physiol 164:31–38

    PubMed  CAS  Google Scholar 

  • Laisk A, Eichelmann H, Oja V, Talts E, Scheibe R (2007) Rates and roles of cyclic and alternative electron flow in potato leaves. Plant Cell Physiol 48:1575–1588

    PubMed  CAS  Google Scholar 

  • Larcher W, Wagner J, Lütz C (1997) The effect of heat on photosynthesis, dark respiration and cellular ultrastructure of the arctic-alpine psychrophyte Ranunculus glacialis. Photosynthetica 34:219–232

    CAS  Google Scholar 

  • Larcher W, Kainmüller C, Wagner J (2010) Survival types of high mountain plants under extreme temperatures. Flora 205:3–18

    Google Scholar 

  • Leegood RC, Edwards GE (1996) Carbon metabolism and photorespiration: temperature dependence in relation to other environmental factors. In: Baker NR (ed) Photosynthesis and the environment, vol 5. Kluwer Academic Publishers, Dordrecht, pp 191–221

    Google Scholar 

  • Logan BA, Barker DH, Demmig-Adams B, Adams WW III (1996) Acclimation of leaf carotenoid composition and ascorbate levels to gradients in the light environment within an Australian rainforest. Plant Cell Environ 19:1083–1090

    CAS  Google Scholar 

  • Lütz C (1996) Avoidance of photoinhibition and examples of photodestruction in high alpine Eriophorum. J Plant Physiol 148:120–128

    Google Scholar 

  • Lütz C, Engel L (2007) Changes in chloroplast ultrastructure in some high-alpine plants: adaptation to metabolic demands and climate. Protoplasma 231:183–192

    PubMed  Google Scholar 

  • Mächler F, Nösberger J (1977) Effect of light intensity and temperature on apparent photosynthesis of altitudinal ecotypes of Trifolium repens L. Oecologia 31:73–78

    Google Scholar 

  • Mächler F, Nösberger J (1978) The adaptation to temperature of photorespiration and of the photosynthetic carbon metabolism of altitudinal ecotypes of Trifolium repens L. Oecologia 35:267–276

    Google Scholar 

  • Mächler F, Nösberger J, Erismann KH (1977) Photosynthetic 14CO2 fixation products in altitudinal ecotypes of Trifolium repens L. with different temperature requirements. Oecologia 31:79–84

    Google Scholar 

  • Makino A, Miyake C, Yokota A (2002) Physiological functions of the water-water cycle (Mehler reaction) and the cyclic electron flow around PSI in rice leaves. Plant Cell Physiol 43:1017–1026

    PubMed  CAS  Google Scholar 

  • Manuel N, Cornic G, Aubert S, Choler P, Bligny R, Heber U (1999) Protection against photoinhibition in the alpine plant Geum montanum. Oecologia 119:149–158

    Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 51:659–668

    PubMed  CAS  Google Scholar 

  • Medek DE, Ball MC, Schortemeyer M (2007) Relative contributions of leaf area ratio and net assimilation rate to change in growth rate depend on growth temperature: comparative analysis of subantarctic and alpine grasses. New Phytol 175:290–300

    PubMed  Google Scholar 

  • Meidner H, Mandsfield TA (1968) Physiology of stomata. McGraw-Hill, Maidenhair/England

    Google Scholar 

  • Meinzer FC, Rundel PW, Goldstein G, Sharifi MR (1992) Carbon isotope composition in relation to leaf gas exchange and environmental conditions in Hawaiian Metrosideros polymorpha populations. Oecologia 91:305–311

    Google Scholar 

  • Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135

    PubMed  Google Scholar 

  • Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Ann Rev Plant Biol 58:459–481

    Google Scholar 

  • Mooney HA, Billings WD (1961) Comparative physiological ecology of arctic and alpine populations of Oxyria digyna. Ecol Mon 31:1–29

    Google Scholar 

  • Moser W, Brzoska W, Zachhuber K, Larcher W (1977) Ergebnisse des IBP-Projekts “Hoher Nebelkogel 3184 m” Sitzungsberichte der Österreichischen Akademie der Wissenschaften (Wien). Mathematisch-Naturwissenschaftliche Klasse. Abteilung I 186:387–419

    Google Scholar 

  • Munné-Bosch S (2005) The role of alpa-tocopherol in plant stress tolerance. J Plant Physiol 162:743–748

    PubMed  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421

    PubMed  CAS  Google Scholar 

  • Murchie EH, Horton P (1998) Contrasting patterns of photosynthetic acclimation to the light environment are dependent on the differential expression of the responses to altered irradiance and spectral quality. Plant Cell Environ 21:139–148

    Google Scholar 

  • Naidu SL, Moose SP, Al-Shoaibi AK, Raines CA, Long SP (2003) Cold tolerance of C4 photosynthesis in Miscanthus x giganteus: adaptation in amounts and sequence of C4 photosynthetic enzymes. Plant Physiol 132:1688–1697

    PubMed  CAS  Google Scholar 

  • Neuner G, Braun V, Buchner O, Taschler D (1999) Leaf rosette closure in the alpine rock species Saxifraga paniculata mill.: significance for survival of drought and heat under high irradiation. Plant Cell Environ 22:1539–1548

    Google Scholar 

  • Nixon PJ, Rich PR (2006) Chlororespiratory pathways and their physiological significance. In: Wise RR, Hoober JK (eds) The structure and function of plastids. Springer, Netherlands, pp 237–251, Chapter 12

    Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Ann Rev Plant Physiol Plant Mol Biol 50:333–359

    CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279

    CAS  Google Scholar 

  • Nogués S, Tcherkez G, Streb P, Pardo A, Baptist F, Bligny R, Ghashghaie J, Cornic G (2006) Respiratory carbon metabolites in the high mountain plant species Ranunculus glacialis. J Exp Bot 57:3837–3845

    PubMed  Google Scholar 

  • Öncel I, Yurdakulol E, Keles Y, Kurt L, Yildiz A (2004) Role of antioxidant defense system and biochemical adaptation on stress tolerance of high mountain and steppe plants. Acta Oecol 26:211–218

    Google Scholar 

  • Öquist G, Huner NPA (2003) Photosynthesis of overwintering evergreen plants. Ann Rev Plant Biol 54:329–355

    Google Scholar 

  • Ort DR, Baker NR (2002) A photoprotective role of O2 as an alternative electron sink in photosynthesis? Cur Op Plant Biol 5:193–198

    CAS  Google Scholar 

  • Osmond B, Ziegler H, Stichler W, Trimborn P (1975) Carbon isotope discrimination in alpine succulent plants supposed to be capable of crassulacean acid metabolism (CAM). Oecologia 18:209–217

    Google Scholar 

  • P’yankov VI, Voznesenskaya EV, Kuz’min AN, Demidov ED, Vasil’ev AA, Dzyubenko OA (1992) C4 photosynthesis in alpine species of the pamirs. Sov Plant Physiol 39:421–430

    Google Scholar 

  • Peltier G, Cournac L (2002) Chlororespiration. Ann Rev Plant Biol 53:523–550

    CAS  Google Scholar 

  • Pfannschmidt T (2003) Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci 8:33–41

    PubMed  CAS  Google Scholar 

  • Pittermann J, Sage RF (2000) Photosynthetic perfomance at low temperature of Bouteloua gracilis Lag., a high-altitude C4 grass from the Rocky mountains. USA Plant Cell Environ 23:811–823

    CAS  Google Scholar 

  • Quiles MJ (2006) Stimulation of chlororespiration by heat and high light intensity in oat plants. Plant Cell Environ 29:1463–1470

    PubMed  CAS  Google Scholar 

  • Rawat AS, Purohit AN (1991) CO2 and water vapour exchange in four alpine herbs at two altitudes and under varying light and temperature conditions. Photosynth Res 28:99–108

    Google Scholar 

  • Rizhsky L, Hallak-Herr E, van Breusegem F, Rachmilevitch S, Barr JE, Rodermel S, Inze D, Mittler R (2002) Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J 32:329–342

    PubMed  CAS  Google Scholar 

  • Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14(Suppl):185–205

    Google Scholar 

  • Rosso D, Ivanov AG, Fu A, Geisler-Lee J, Hendrickson L, Geisler M, Stewart G, Krol M, Hurry V, Rodermel SR, Maxwell DP, Hüner NPA (2006) IMMUTANS does not act as a stress-induced safety valve in the protection of the photosynthetic apparatus of Arabidopsis during steady-state photosynthesis. Plant Physiol 142:574–585

    PubMed  CAS  Google Scholar 

  • Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051

    PubMed  CAS  Google Scholar 

  • Sage RF, Wedin DA, Li M (1999) The biogeography of C4 photosynthesis: patterns and controlling factors. In: Sage RF, Monson RK (eds) Plant biology. Academic, San Diego, pp 313–373

    Google Scholar 

  • Sakata T, Yokoi Y (2002) Analysis of the O2 dependency in leaf-level photosynthesis of two Reynoutria japonica populations growing at different altitudes. Plant Cell Environ 25:65–74

    Google Scholar 

  • Savitch LV, Gray GR, Huner NPA (1997) Feedback-limited photosynthesis and regulation of sucrose-starch accumulation during cold acclimation and low-temperature stress in a spring and winter wheat. Planta 201:18–26

    CAS  Google Scholar 

  • Scheller HV, Haldrup A (2005) Photoinhibition of photosystem I. Planta 221:5–8

    PubMed  CAS  Google Scholar 

  • Shahbazi M, Gilbert M, Labouré A-M, Kuntz M (2007) Dual role of the plastid terminal oxidase in tomato. Plant Physiol 145:691–702

    PubMed  CAS  Google Scholar 

  • Shang W, Feierabend J (1998) Slow turnover of the D1 reaction center protein of photosystem II in leaves of high mountain plants. FEBS Lett 425:97–100

    PubMed  CAS  Google Scholar 

  • Shang W, Feierabend J (1999) Dependence of catalase photoinactivation in rye leaves on light intensity and quality and characterization of a chloroplast-mediated inactivation in red light. Photosynth Res 59:201–213

    CAS  Google Scholar 

  • Shao N, Beck CF, Lemaire SD, Krieger-Liszkay A (2008) Photosynthetic electron flow affects H2O2 signaling by inactivation of catalase in Chlamydomonas reinhardtii. Planta 228:1055–1066

    PubMed  CAS  Google Scholar 

  • Shi Z, Liu S, Liu X, Centritto M (2006) Altitudinal variation in photosynthetic capacity, diffusional conductance and delta 13C of butterfly bush (Buddleja davidii) plants growing at high elevations. Physiol Plant 128:722–731

    CAS  Google Scholar 

  • Strand A, Hurry V, Henkes S, Huner N, Gustafsson P, Gardeström P, Stitt M (1999) Acclimation of Arabidopsis leaves developing at low temperatures. Increasing cytoplasmic volume accompanies increased activities of enzymes in the Calvin cycle and in the sucrose-biosynthesis pathway. Plant Physiol 119:1387–1397

    PubMed  CAS  Google Scholar 

  • Streb P (1994) Lichtschäden und Streßwirkungen in Blättern und antioxidative Schutzmechanismen. Dissertation am Fachbereich Biologie der J.W. Goethe Universität

    Google Scholar 

  • Streb P, Feierabend J (1999) Significance of antioxidants and electron sinks for the cold-hardening-induced resistance of winter rye leaves to photo-oxidative stress. Plant Cell Environ 22:1225–1237

    CAS  Google Scholar 

  • Streb P, Feierabend J, Bligny R (1997) Resistance to photoinhibition of photosystem II and catalase and antioxidative protection in high mountain plants. Plant Cell Environ 20:1030–1040

    CAS  Google Scholar 

  • Streb P, Shang W, Feierabend J, Bligny R (1998) Divergent strategies of photoprotection in high-mountain plants. Planta 207:313–324

    CAS  Google Scholar 

  • Streb P, Shang W, Feierabend J (1999) Resistance of cold-hardened winter rye leaves (Secale cereale L.) to photo-oxidative stress. Plant Cell Environ 22:1211–1223

    CAS  Google Scholar 

  • Streb P, Aubert S, Gout E, Bligny R (2003a) Reversibility of cold- and light-stress tolerance and accompanying changes of metabolite and antioxidant levels in the two high mountain plant species Soldanella alpina and Ranunculus glacialis. J Exp Bot 54:405–418

    PubMed  CAS  Google Scholar 

  • Streb P, Aubert S, Gout E, Bligny R (2003b) Cold- and light-induced changes of metabolite and antioxidant levels in two high mountain plant species Soldanella alpina and Ranunculus glacialis and a lowland species Pisum sativum. Physiol Plant 118:96–104

    PubMed  CAS  Google Scholar 

  • Streb P, Aubert S, Bligny R (2003c) High temperature effects on light sensitivity in the two high mountain plant species Soldanella alpina (L) and Ranunculus glacialis (L). Plant Biol 5:432–440

    CAS  Google Scholar 

  • Streb P, Josse E-M, Gallouët E, Baptist F, Kuntz M, Cornic G (2005) Evidence for alternative electron sinks to photosynthetic carbon assimilation in the high mountain plant species Ranunculus glacialis. Plant Cell Environ 28:1123–1135

    CAS  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    CAS  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182

    PubMed  CAS  Google Scholar 

  • Tallon C, Quiles MJ (2007) Acclimation to heat and high light intensity during the development of oat leaves increases the NADH DH complex and PTOX levels in chloroplasts. Plant Sci 173:438–445

    CAS  Google Scholar 

  • Terashima I, Masuzawa T, Ohba H (1993) Photosynthetic characteristics of a giant alpine plant, Rheum nobile Hook. f. et Thoms. and of some other alpine species measured at 4300 m, in the eastern Himalaya, Nepal. Oecologia 95:194–201

    Google Scholar 

  • Terashima I, Funayama S, Sonoike K (1994) The site of photoinhibition in leaves of Cucumis sativus L. at low temperature is photosystem I, not photosystem II. Planta 193:300–306

    CAS  Google Scholar 

  • Terashima I, Masuzawa T, Ohba H, Yokoi Y (1995) Is photosynthesis suppressed at higher elevations due to low CO2 pressure? Ecology 76:2663–2668

    Google Scholar 

  • Triantaphylides Ch, Krischke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M, Van Breusegem F, Mueller MJ (2008) Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol 148:960–968

    PubMed  CAS  Google Scholar 

  • van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150

    Google Scholar 

  • Vitousek PM, Field CB, Matson PA (1990) Variation of foliar δ13C in Hawaiian Metrosideros polymorpha: a case of internal resistance? Oecologia 84:362–370

    Google Scholar 

  • Wagner J, Larcher W (1981) Dependence of CO2 gas exchange and acid metabolism of the alpine CAM plant Sempervivum montanum on temperature and light. Oecologia 50:88–93

    Google Scholar 

  • Walters RG (2005) Towards an understanding of photosynthetic acclimation. J Exp Bot 56:435–447

    PubMed  CAS  Google Scholar 

  • Wang D, Naidu SL, Portis AR Jr, Moose SP, Long SP (2008) Can the cold-tolerance of C4 photosynthesis in Miscanthus x giganteus relative to Zea mays be explained by differences in activities and thermal properties of Rubsico? J Exp Botany 59:1779–1787

    CAS  Google Scholar 

  • Wang Y, He W, Huang H, An L, Wang D, Zhang F (2009) Antioxidative responses to different altitudes in leaves of alpine plant Polygonum viviparum in summer. Acta Physiol Plant 31:839–848

    CAS  Google Scholar 

  • Wildi B, Lütz C (1996) Antioxidant composition of selected high alpine plant species from different altitudes. Plant Cell Environ 19:138–146

    CAS  Google Scholar 

  • Williams EL, Hovenden MJ, Close DC (2003) Strategies of light energy utilisation, dissipation and attenuation in six co-occurring alpine heath species in Tasmania. Funct Plant Biol 30:1205–1218

    Google Scholar 

  • Wise RR (1995) Chilling-enhanced photooxidation: the production, action and study of reactive oxygen species produced during chilling in the light. Photosynth Res 45:79–97

    CAS  Google Scholar 

  • Yi XF, Yang YQ, Zhang XA, Li LX, Zhao L (2003) No C4 plants found at the Haibei alpine meadow ecosystem research station in Qinghai, China: evidence from stable carbon isotope studies. Acta Bot Sinica 45:1291–1296

    Google Scholar 

  • Zarter CR, Adams WW III, Ebbert V, Adamska I, Jansson S, Demmig-Adams B (2006a) Winter acclimation of PsbS and related proteins in the evergreen Arctostaphylos uva-ursi as influenced by altitude and light environment. Plant Cell Environ 29:869–878

    PubMed  CAS  Google Scholar 

  • Zarter CR, Demmig-Adams B, Ebbert V, Adamska I, Adams WW III (2006b) Photosynthetic capacity and light harvesting efficiency during the winter-to-spring transition in subalpine conifers. New Phytol 172:283–292

    PubMed  Google Scholar 

  • Zhang S-B, Hu H (2008) Photosynthetic adaptation Meconopsis integrifolia Franch. and M. horridula var. racemosa Prain. Bot Stud 49:226–233

    Google Scholar 

  • Zhou R, Zhao H (2004) Seasonal pattern of antioxidant enzyme system in the roots of perennial forage grasses grown in alpine habitat, related to freezing tolerance. Physiol Plant 121:399–408

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof Dr. J. Feierabend for critical reading of the manuscript. We acknowledge the Station Alpine du Lautaret for their work facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Streb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Streb, P., Cornic, G. (2012). Photosynthesis and Antioxidative Protection in Alpine Herbs. In: Lütz, C. (eds) Plants in Alpine Regions. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0136-0_7

Download citation

Publish with us

Policies and ethics