Advertisement

Cell Organelle Structure and Function in Alpine and Polar Plants are Influenced by Growth Conditions and Climate

Chapter

Abstract

The alpine environment requires high flexibility in morphology, anatomy, cell structures and physiology for all biological life forms that grow and propagate there. These demands also characterize most of the polar environments. Alpine and polar plants have been studied in several ecophysiological and physiological aspects, especially to describe the light- or temperature adaptations of their unique growth environments (Amils et al.

Keywords

Snow Cover Alpine Plant Growth Site Polar Plant Alpine Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ARP

Anti-radical power

AWI

Alfred Wegener institute for polar research

CP

Chloroplast protrusion

Fv/Fm

Photosynthetic optimum quantum yield

LM

Light microscopy

PAR

Photosynthetic active radiation

PS II

Photo system II

SEM

Scanning electron microscopy

TEM

Transmission electron microscopy

Notes

Acknowledgements

The authors thank the Ny-Ålesund International Research and Monitoring Facility for their support. Financial support by the Norsk Polar Institute and the LSF for C. L. and A. H. is kindly acknowledged. We also thank Ch. Wiencke and his group from the AWI for the possibility to be guests at their research stations in Svalbard (High Arctic) and on King George Island (Antarctica). Part of this work was supported by the Austrian Science Fund (FWF) to C.L.

References

  1. Akhalkatsi M, Wagner J (1997) Comparative embryology of three Gentianaceae species from the Central Caucasus and the European Alps. Plant Syst Evol 204:39–48CrossRefGoogle Scholar
  2. Alberdi M, Bravo LA, Gutiérrez A, Gidekel M, Corcuera LJ (2002) Ecophysiology of Antarctic vascular plants. Physiol Plant 115:479–486PubMedCrossRefGoogle Scholar
  3. Amils R, Ellis-Evans C, Hinghofer-Szalkay H (eds) (2007) Life in extreme environments. Springer, DordrechtGoogle Scholar
  4. Anderson JM, Waldron JC, Thorne SW (1978) Chlorophyll protein compexes of spinach and barley thylakoids. Spectral characteristics of six complexes resolved by an improved electrophoretic procedure. FEBS Lett 92(2):227–233CrossRefGoogle Scholar
  5. Argyroudi-Akoyunoglou JH, Akoyunoglou G (1979) The chlorophyll protein complexes of the thylakoids in greening plastids of Phaseolus vulgaris. FEBS Lett 104(1):78–84CrossRefGoogle Scholar
  6. Bargagli R (2008) Antarctic ecosystems. Environmental contamination, climate change, and human impact, vol 175, Ecological studies. Springer, BerlinGoogle Scholar
  7. Barsig M, Gehrke C, Schneider K (1998) Effects of ultraviolet-B radiation on leaf ultrastructure, carbohydrates and pigmentation in the moss Polytrichum commune in the subarctic. Bryologist 101:357–365Google Scholar
  8. Beck E (1994) Cold tolerance in tropical alpine plants. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Plant form and function. Cambridge University Press, Cambridge, pp 77–110CrossRefGoogle Scholar
  9. Bergstrom D, Convey P, Huiskes A (2006) Trends in Antarctic terrestrial and limnetic ecosystems. Springer, DordrechtCrossRefGoogle Scholar
  10. Bergweiler P (1987) Charakterisierung von Bau und Funktion der Photosynthese-Membranen ausgewählter Pflanzen unter den Extrembedingungen des Hochgebirges. Ph.D. thesis, University of KölnGoogle Scholar
  11. Beyer L, Bölter M (2002) Geoecology of Antarctic ice-free coastal landscapes, vol 154, Ecological studies. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  12. Billings WD (1974) Adaptations and origins of alpine plants. Arct Alp Res 6(2):129–142CrossRefGoogle Scholar
  13. Blank-Huber M (1986) Untersuchungen zur Chlorophyll Biosynthese. Solubilisierung und Eigenschaften der Chlorophyll-Synthetase. Ph.D. thesis, University of MunichGoogle Scholar
  14. Bravo LA, Griffith M (2005) Characterization of antifreeze activity in Antarctic plants. J Exp Bot 56(414):1189–1196PubMedCrossRefGoogle Scholar
  15. Bravo LA, Ulloa N, Zuñiga GE, Casanova A, Corcuera LJ, Alberdi M (2001) Cold resistance in Antarctic angiosperms. Physiol Plant 111:55–65CrossRefGoogle Scholar
  16. Bravo LA, Saavedra-Mella FA, Vera F, Guerra A, Cavieres LA, Ivanov AG, Huner NPA, Corcuera LJ (2007) Effect of cold acclimation on the photosynthetic performance of two ecotypes of Colobanthus quitensis (Kunth.) Bartl. J Exp Bot 58(13):3581–3590PubMedCrossRefGoogle Scholar
  17. Buchner O, Holzinger A, Lütz C (2007a) Effects of temperature and light on the formation of chloroplast protrusions in leaf mesophyll cells of high alpine plants. Plant Cell Environ 30:1347–1356PubMedCrossRefGoogle Scholar
  18. Buchner O, Lütz C, Holzinger A (2007b) Design and construction of a new temperature-controlled chamber for light and confocal microscopy under monitored conditions: biological applications for plant samples. J Microsc 225(2):183–191PubMedCrossRefGoogle Scholar
  19. Caldwell MM, Teramura AH, Tevini M, Bornman JF, Björn LO, Kulandaivelu G (1995) Effects of increased solar ultraviolet radiation on terrestrial plants. Ambio 24:166–173Google Scholar
  20. Caldwell MM, Björn LO, Bornman JF, Flint SD, Kulandaivelu G, Teramura AH, Tevini M (1998) Effects of increased solar ultraviolet radiation on terrestrial ecosystems. J Photochem Photobiol 46(1–3):40–52Google Scholar
  21. Casanova-Katny MA, Bravo LA, Molina-Montenegro M, Corcuera LJ, Cavieres LA (2006) Photosynthetic performance of Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in a high-elevation site of the Andes of central Chile. Rev Chil Hist Nat 79:41–53CrossRefGoogle Scholar
  22. Charon J, Launay J, Carde J-P (1987) Spatial organization and volume density of leucoplasts in pine secretory cells. Protoplasma 138:45–53CrossRefGoogle Scholar
  23. Ciamporova M, Trginova I (1999) Modifications of plant cell ultrastructure accompanying metabolic responses to low temperatures. Biol Bratisl 54(4):349–360Google Scholar
  24. Crawford RMM (1997) Habitat fragility as an aid to long-term survival in arctic vegetation. In: Woodin SJ, Marquiss M (eds) Ecology of Arctic environments. Blackwell, Oxford, pp 113–136. ISBN 0-632-04218-4Google Scholar
  25. Crawford RMM (2008) Plants at the margin. Ecological limits and climate change. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. Crawford RMM, Balfour J (1983) Female predominant sex ratios and physiological differentiation in arctic willows. J Ecol 71:149–160CrossRefGoogle Scholar
  27. Devidé Z, Ljubeŝić N (1989) Plastid transformation in greening scales of the onion bulb (Allium cepa, Alliaceae). Plant Syst Evol 165:85–89CrossRefGoogle Scholar
  28. Edwards JA, Lewis Smith RI (1988) Photosynthesis and respiration of Colobanthus quitensis and Deschampsia antarctica from the maritime Antarctic. Br Antarct Surv Bull 81:43–63Google Scholar
  29. Elberling B (2007) Annual soil CO2 effluxes in the High Arctic: the role of snow thickness and vegetation type. Soil Biol Biochem 39:646–654CrossRefGoogle Scholar
  30. Eurola S (1968) Über die Feldheidevegetation in den Gebirgen von Isfjorden und Hornsund in Westspitzbergen. Aquilo. Botanica 7:1–56Google Scholar
  31. Freeman TP, Duysen ME (1975) The effect of imposed water stress on the development and ultrastructure of wheat chloroplasts. Protoplasma 83:131–145CrossRefGoogle Scholar
  32. Gielwanowska I, Szczuka E (2005) New ultrastructural features of organelles in leaf cells of Deschampsia antarctica Desv. Polar Biol 28:951–955CrossRefGoogle Scholar
  33. Giełwanowska I, Szczuka E, Bednara J, Górecki R (2005) Anatomical features and ultrastructure of Deschampsia antarctica (Poaceae) leaves from different growing habitats. Ann Bot 96:1109–1119PubMedCrossRefGoogle Scholar
  34. Hadac E (1989) Notes on plant communities of Spitsbergen. Folia Geobot Phytotax 24:131–169Google Scholar
  35. Heide OM (2005) Ecotypic variation among European arctic and alpine populations of Oxyria digyna. Arct Antarct Alp Res 37(2):233–238CrossRefGoogle Scholar
  36. Holzinger A, Wasteneys G, Lütz C (2007a) Investigating cytoskeletal function in chloroplast protrusion formation in the arctic-alpine plant Oxyria digyna. Plant Biol 9:400–410PubMedCrossRefGoogle Scholar
  37. Holzinger A, Buchner O, Lütz C, Hanson MR (2007b) Temperature-sensitive formation of chloroplast protrusions and stromules in mesophyll cells of Arabidopsis thaliana. Protoplasma 230:23–30PubMedCrossRefGoogle Scholar
  38. Holzinger A, Kwok EY, Hanson MR (2008) Effects of arc3, arc5 and arc6 mutations on plastid morphology and stromule formation in green and nongreen tissues of Arabidopsis thaliana. Photochem Photobiol 84:1324–1335PubMedCrossRefGoogle Scholar
  39. Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (2003) Antarctic biology in a global context. Backhuys, Leiden. ISBN 90-5782-079-XGoogle Scholar
  40. Jones HG, Demmers-Derks HHWM (1999) Photoinhibition as a factor in altitudinal for latitudinal limits of species. Phyton 39(4):91–98Google Scholar
  41. Kappen L (1983) Anpassungen von Pflanzen an kalte Extremstandorte. Ber Deutsch Bot Ges 96:87–101Google Scholar
  42. Köhler RH, Cao J, Zipfel W, Webb WW, Hanson MR (1997) Exchange of protein molecules through connections between higher plant plastids. Science 276:2039–2042PubMedCrossRefGoogle Scholar
  43. Körner C (2003) Alpine plant life, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  44. Körner C, Larcher W (1988) Plant life in cold climates. Symp Soc Exp Biol 42:25–57PubMedGoogle Scholar
  45. Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350CrossRefGoogle Scholar
  46. Krzesłowska M, Woźny A (2002) Why chloroplasts in apical cell of Funaria hygrometrica protonemata treated with lead are distributed in different way than in control. Biol Plant 45(1):99–104CrossRefGoogle Scholar
  47. Kwok EY, Hanson MR (2004a) Stromules and the dynamic nature of plastid morphology. J Microsc 214:124–137PubMedCrossRefGoogle Scholar
  48. Kwok EY, Hanson MR (2004b) In vivo analysis of interactions between GFP-labeled microfilaments and plastid stromules. BMC Plant Biol 10:2CrossRefGoogle Scholar
  49. Larcher W (1977) Ergebnisse des IBP-Projektes “Zwergstrauchheide Patscherkofel”Sitzungsber. Österr. Akad. Wiss. Abt I, Vol 186. Springer BerlinGoogle Scholar
  50. Larcher W (1987) Streß bei Pflanzen. Naturwissenschaften 74:158–167CrossRefGoogle Scholar
  51. Larcher W (2001) Ökophysiologie der Pflanzen, 6th edn. Ulmer, StuttgartGoogle Scholar
  52. Larcher W, Wagner J (1976) Temperaturgrenzen der CO2-Aufnahme und Temperaturresistenz der Blätter von Gebirgspflanzen im vegetationsaktiven Zustand. Oecol Plant 11:361–374Google Scholar
  53. Larcher W, Wagner J (2009) High mountain bioclimate: temperatures near the ground recorded from the timberline to the nival zone in the Central Alps. Contrib Nat Hist 12:857–874Google Scholar
  54. Larcher W, Kainmüller C, Wagner J (2010) Survival types of high mountain plants under extreme temperatures. Flora 205:3–18CrossRefGoogle Scholar
  55. Laurila T, Soegaard H, Lloyd CR, Aurela M, Tuovinen JP, Nordstroem C (2001) Seasonal variations of net CO2 exchange in European Arctic ecosystems. Theor Appl Climatol 70:183–201CrossRefGoogle Scholar
  56. Lehner G, Lütz C (2003) Photosynthetic functions of cembran pines and dwarf pines during winter at timberline as regulated by different temperatures, snowcover and light. J Plant Physiol 160:153–166PubMedCrossRefGoogle Scholar
  57. Lewis Smith R, Lewis Smith RI (2003) The enigma of Colobanthus quitensis and Deschampsia antarctica in Antarctica. In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. Backhuys, Leiden. ISBN 90-5782-079-XGoogle Scholar
  58. Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148:4–14Google Scholar
  59. Lloyd CR (2001) On the physical controls of the carbon dioxide balance at a high arctic site in Svalbard. Theor Appl Climatol 70:167–182CrossRefGoogle Scholar
  60. Lütz C (1981) On the significance of prolamellar bodies in membrane development of etioplasts. Protoplasma 108:99–115CrossRefGoogle Scholar
  61. Lütz C (1986) Prolamellar bodies. Review article in: “photosynthetic membranes,” section lipids. In: Arntzen C, Staehelin A (eds) Encyclopedia of plant physiology, vol 19. Springer, Berlin, pp 683–692Google Scholar
  62. Lütz C (1987) Cytology of high alpine plants II. Microbody activity in leaves of Ranunculus glacialis L. Cytologia 52:679–686Google Scholar
  63. Lütz C (1996) Avoidance of photoinhibition and examples of photodestruction in high alpine Eriophorum. J Plant Physiol 148:120–128Google Scholar
  64. Lütz C (2010) Cell physiology of plants growing in cold environments. Protoplasma 244:53–73 (Review)PubMedCrossRefGoogle Scholar
  65. Lütz C, Engel L (2007) Changes in chloroplast ultrastructure in some high alpine plants: adaptation to metabolic demands and climate? Protoplasma 231:183–192PubMedCrossRefGoogle Scholar
  66. Lütz C, Holzinger A (2004) A comparative analysis of photosynthetic pigments and tocopherol of some arctic-alpine plants from the Kongsfjord area, Spitzbergen, Norway. In: Wiencke Ch (ed) Reports on polar research, vol 492. AWI, Bremerhaven, pp 114–122, 1618-3193Google Scholar
  67. Lütz C, Moser W (1977) Beiträge zur Cytologie hochalpiner Pflanzen. I. Untersuchungen zur Ultrastruktur von Ranunculus glacialis L. Flora 166:21–34Google Scholar
  68. Lütz C, Schönauer E, Neuner G (2005) Physiological adaptation before and after snow melt in green overwintering leaves of some alpine plants. Phyton 45:139–156Google Scholar
  69. Möller I, Wüthrich Ch, Thannheiser D (2001) Changes of plant community patterns, phytomass and carbon balance in a high arctic tundra ecosystem under a climate of increasing cloudiness. Biomonitoring 35:225–242Google Scholar
  70. Montiel P, Smith A, Keiller D (1999) Photosynthetic responses of selected Antarctic plants to solar radiation in the southern maritime Antarctic. Polar Res 18(2):229–235CrossRefGoogle Scholar
  71. Moser W (1970) Ökophysiologische Unersuchungen an Nivalpflanzen. Mittl Ostalp-din. Ges f Vegetkde 11:121–134Google Scholar
  72. Moser W, Brzoska W, Zachhuber K, Larcher W (1977) Ergebnisse des IBP-Projekts “Hoher Nebelkogel 3184 m”. Sitzungsber Österr Akad Wiss. Math-naturw Kl Abt 1 186:387–419Google Scholar
  73. Mosyakin SL, Bezusko LG, Mosyakin AS (2007) Origins of native vascular plants of Antarctica: comments from a historical phytogeography viewpoint. Cytol Genet 41(5):308–316CrossRefGoogle Scholar
  74. Musser RL, Thomas SA, Wise RR, Peeler TC, Naylor AW (1984) Chloroplast ultrastructure, chlorophyll fluorescence, and pigment composition in chilling-stressed soybeans. Plant Physiol 74:749–754PubMedCrossRefGoogle Scholar
  75. Nagy L, Grabherr G (2009) The biology of Alpine habitats. Oxford University Press, OxfordGoogle Scholar
  76. Newcomb EH (1967) Fine structure of protein-storing plastids in bean root tips. J Cell Biol 33:143–163PubMedCrossRefGoogle Scholar
  77. Nybakken L, Bilger W, Johanson U, Björn LO, Zielke M, Solheim B (2004) Epidermal UV-screening in vascular plants from Svalbard (Norwegian Arctic). Polar Biol 27:383–390CrossRefGoogle Scholar
  78. Oerbaeck JB, Kallenborn R, Tombre I, Hegseth EN, Falk-Petersen S, Hoel AH (eds) (2007) Arctic Alpine ecosystems and people in a changing environment. Springer, BerlinGoogle Scholar
  79. Oerbaek J, Tombre I, Kallenborn R (2004) Challenges in Arctic–Alpine environmental research. Arct Antarct Alp Res 36:281–283CrossRefGoogle Scholar
  80. Olave-Concha N, Bravo LA, Ruiz-Lara S, Corcuera LJ (2005) Differential accumulation of dehydrin-like proteins by abiotic stresses in Deschampsia antarctica Desv. Polar Biol 28:506–513CrossRefGoogle Scholar
  81. Oppeneiger C (2008) Einfluss von klimatischen Faktoren auf den Primär- und Sekundärstoffwechsel von Dryas octopetala L. Ph.D. thesis, University of InnsbruckGoogle Scholar
  82. Paramonova NV, Shevyakova NI, VlV K (2004) Ultrastructure of chloroplasts and their storage inclusions in the primary leaves of Mesembryanthemum crystallinum affected by putrescine and NaCl. Russ J Plant Physiol 51(1):86–96CrossRefGoogle Scholar
  83. Parnikoza IY, Maidanuk DN, Kozeretska IA (2007) Are Deschampsia antarcica Desv. and Colobanthus quitensis (Kunth) Bartl. migratory relicts? Cytol Genet 41:226–229CrossRefGoogle Scholar
  84. Pechová R, Kutík J, Holá D, Kocová M, Haisel D, Vicánková A (2003) The ultrastructure of chloroplasts, content of photosynthetic pigments and photochemical activity of maize (Zea mays L.) as influenced by different concentrations of the herbicide amitrole. Photosynthetica 41(1):127–136CrossRefGoogle Scholar
  85. Pérez-Torres E, García A, Dinamarca J, Alberdi M, Gutiérrez A, Gidekel M, Ivanov AG, Hüner NPA, Corcuera LJ, Bravo LA (2004a) The role of photochemical quenching and antioxidants in photoprotection of Deschampsia antarctica. Funct Plant Biol 31(7):731–741CrossRefGoogle Scholar
  86. Pérez-Torres E, Dinamarca J, Bravo LA, Corcuera LJ (2004b) Responses of Colobanthus quitensis (Kunth) Bartl. to high light and low temperature. Polar Biol 27:183–189CrossRefGoogle Scholar
  87. Pérez-Torres E, Bravo LA, Corcuera LJ, Johson GN (2007) Is electron transport to oxygen an important mechanism in photoprotection? Contrasting responses from Antarctic vascular plants. Physiol Plant 130:185–194CrossRefGoogle Scholar
  88. Phoenix GK, Gwynn-Jones D, Lee JA, Callaghan TV (2000) The impacts of UV-B radiation on the regeneration of a subarctic heath community. Plant Ecol 146:67–75CrossRefGoogle Scholar
  89. Phoenix GK, Gwynn-Jones D, Callaghan TV, Sleep D, Lee JA (2001) Effects of global change on a sub-arctic heath: effects of enhanced UV-B radiation and increased summer precipitation. J Ecol 89:256–267CrossRefGoogle Scholar
  90. Piotrowicz-Cieślak AI, Gielwanowska I, Bochenek A, Loro P, Górecki RJ (2005) Carbohydrates in Colobanthus quitensis and Deschampsia antarctica. Acta Soc Bot Pol 74(3):209–217Google Scholar
  91. Robberecht R, Junttila O (1992) The freezing response of an arctic cushion plant, Saxifraga caespitose L.: acclimation, freezing tolerance and ice nucleation. Ann Bot 70:129–135Google Scholar
  92. Robinson CH, Michelsen A, Lee JA, Whitehead SJ, Callaghan TV, Press MC, Jonasson S (1997) Elevated atmospheric CO2 affects decomposition of Festuca vivipara litter and roots in experiments simulating environmental change in two contrasting arctic ecosystems. Glob Change Biol 3:37–49CrossRefGoogle Scholar
  93. Robinson CH, Kirkham JB, Littlewood R (1999) Decomposition of root mixtures from high arctic plants: a microcosm study. Soil Biol Biochem 31:1101–1108CrossRefGoogle Scholar
  94. Rønning OI (1996) Svalbards flora, 3rd edn. Norsk Polarinstitutt, Oslo. ISBN 82-7666-101-7Google Scholar
  95. Sarvari E, Nyitrai P, Gyöve K (1984) Chlorophyll protein derivative of the peripheral light-harvesting antenna of photosystem I. Photobiophy 8:229–237Google Scholar
  96. Schäfers H-A, Feierabend J (1976) Ultrastructural differentiation of plastids and other organelles in rye leaves with a high-temperature-induced deficiency of plastid ribosomes. Cytobiol/Eur J Cell Biol 14:75–90Google Scholar
  97. Schulze ED, Beck E, Müller-Hohenstein K (eds) (2005) Plant ecology. Springer, BerlinGoogle Scholar
  98. Shalla TA (1964) Assembly and aggregation of tobacco mosaic virus in tomato leaflets. J Cell Biol 21:253–264PubMedCrossRefGoogle Scholar
  99. Shimokawa K, Sakanoshita A, Horiba K (1978) Ethylene-induced changes of chloroplast structure in Satsuma mandarin (Citrus unshiu Marc.). Plant Cell Physiol 19:229–236Google Scholar
  100. Sjolund RD, Weier TE (1971) An ultrastructural study of chloroplast structure and dedifferentiation in tissue cultures of Streptanthus tortosus (Cruciferae). Am J Bot 58:172–181CrossRefGoogle Scholar
  101. Spencer D, Unt H (1965) Biochemical and structural correlations in isolated spinach chloroplasts under isotonic and hypotonic conditions. Aust J Biol Sci 18:197–210Google Scholar
  102. Spencer D, Wildman SG (1962) Observations on the structure of grana-containing chloroplasts and a proposed model of chloroplast structure. Aust J Biol Sci 15:599–610Google Scholar
  103. Stoynova E, Petrov P, Semerdjieva S (1997) Some effects of chlorsulfuron on the ultrastructure of root and leaf cells in pea plants. J Plant Growth Regul 16:1–5CrossRefGoogle Scholar
  104. Streb P, Josse E-M, Gallouët E, Baptist F, Kuntz M, Cornic G (2005) Evidence for alternative electron sinks to photosynthetic carbon assimilation in the high mountain species Ranunculus glacialis. Plant Cell Environ 28:1123–1135CrossRefGoogle Scholar
  105. Thannheiser D, Möller I, Wüthrich Ch (1998) A case study of the vegetation, the carbon budget and possible consequences of climatic changes in western Spitsbergen. Verh Ges Ökologie 28:475–484Google Scholar
  106. Thomson W (1992) Agricultural chemicals. Book II: herbicides. Thomson, FresnoGoogle Scholar
  107. Vesk M, Mercer FV, Possingham JV (1965) Observations on the origin of chloroplasts and mitochondria in the leaf cells of higher plants. Aust J Bot 13:161–169Google Scholar
  108. Wielgolaski FE, Karlsen SR (2007) Some views on plants in polar and alpine regions. Rev Environ Sci Biotechnol 6:33–45CrossRefGoogle Scholar
  109. Wiencke Ch (2004) Reports on polar and marine research, vol 492. AWI, Bremerhaven, 1618-3193Google Scholar
  110. Wiencke C, Schulz D (1975) Sporophyte development of Funaria hygrometrica Sibith. I. Structural data of water and nutrient uptake in the haustorium. Protoplasma 86:107–117CrossRefGoogle Scholar
  111. Wiencke C, Schulz D (1977) The development of transfer cells in the haustorium of the Funaria hygrometrica sporophyte. Bryophytorum Bibliotheca 13:147–167Google Scholar
  112. Wiencke Ch, Ferreyra GA, Abele D, Marenssi S (2008) Reports on polar and marine research, vol 571. AWI, Bremerhaven, 1618-3193Google Scholar
  113. Wildi B, Lütz C (1996) Antioxidant composition of selected high alpine plant species from different altitudes. Plant Cell Environ 19:138–146CrossRefGoogle Scholar
  114. Wise RR, Naylor AW (1987) Chilling-enhanced photooxidation. The peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. Plant Physiol 83:272–277PubMedCrossRefGoogle Scholar
  115. Wookey PA, Robinson CH, Parsons AM, Welker JM, Press MC, Callaghan TV, Lee JA (1995) Environmental constraints on the growth, photosynthesis and reproductive development of Dryas octopetala at a high arctic polar semi-desert, Svalbard. Oecologia 102:478–489CrossRefGoogle Scholar
  116. Worthing CR (1983) The Pesticide manual: a world compendium, 7th edn. The British Crop Protection Council, Champaign, USAGoogle Scholar
  117. Wüthrich CH, Möller I, Thannheiser D (1999) CO2 fluxes in different plant communities of a high-arctic tundra watershed (Western Spitsbergen). J Vegetat Sci 10:413–420CrossRefGoogle Scholar
  118. Xiong FS, Ruhland CT, Day TA (1999) Photosynthetic temperature response of the Antarctic vascular plants Colobanthus quitensis and Deschampsia antarctica. Physiol Plant 106:276–286CrossRefGoogle Scholar
  119. Zuñiga-Feest A, Ort DR, Gutiérrez A, Gidekel M, Bravo LA, Corcuera LJ (2005) Light regulation of sucrose-phosphate synthase activity in the freezing-tolerant grass Deschampsia antarctica. Photosynth Res 83:75–86PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2012

Authors and Affiliations

  1. 1.Institute of BotanyUniversity of InnsbruckInnsbruckAustria
  2. 2.German Aerospace Center Project Management AgencyBonnGermany

Personalised recommendations