Rain and Snow at High Elevation

The Interaction of Water, Energy and Trace Substances


Plants are major players in the alpine biogeochemical cycles, using water, energy and nutrients from both the atmosphere and the ground for their primary production. They are exposed to rain and snowfall, may be covered by snow for considerable periods, absorb solar radiation and transpire water vapour back to the atmosphere. While the supply of energy, water and nutrients from the atmosphere is the boundary condition for the plants’ existence, they significantly determine the return of all three quantities back to the air.


Snow Cover Snow Water Equivalent Convective Precipitation Snow Pack Consequent Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baumgartner A, Reichel E (1983) Der Wasserhaushalt der Alpen. Oldenbourg, München, pp 343Google Scholar
  2. Efthymiadis D, Jones PD, Briffa KR, Auer I, Böhm R, Schöner W, Frei C, Schmidli J (2006) Construction of a 10-min-gridded precipitation data set for the Greater Alpine Region for 1800–2003. J Geophys Res 290(111):1–22. doi: D01105 Google Scholar
  3. Fliri F (1975) Das Klima der Alpen im Raum von Tirol. Universitätsverlag Wagner, Innsbruck, pp 179–274Google Scholar
  4. Frei C, Schär C (1998) A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int J Climatol 18:873–900CrossRefGoogle Scholar
  5. Gattermayr W (2010) Hydrologische Übersicht August 2010. Hydrographischer Dienst Tirol, S 21Google Scholar
  6. Herrmann A, Kuhn M (1995) Schnee und Eis. In: Baumgartner A, Liebscher HJ (eds) Lehrbuch der Hydrologie Band 1 Allgemeine Hydrologie, 2. Auflage, Bornträger, Berlin, pp 278–319Google Scholar
  7. Johannessen M, Henriksen A (1978) Chemistry of snow melt water: changes in concentration during melting. Water Resour Res 14:615–619CrossRefGoogle Scholar
  8. Kuhn M (1994) Schnee und Eis im Wasserkreislauf Österreichs. Österreichische Wasser- und Abfallwirtschaft (Wien) 46:76–83Google Scholar
  9. Kuhn M (1997) Meteorologische und klimatologische Bedingungen für die Flora von Nordtirol, Osttirol und Vorarlberg. In: Polatschek A, Maier M, Neuner W (eds) Flora von Nordtirol, Osttirol und Vorarlberg. Verlag des, Innsbruck, pp 26–42Google Scholar
  10. Kuhn M (2001) The nutrient cycle through snow and ice, a review. Aquat Sci 63:150–167CrossRefGoogle Scholar
  11. Kuhn M (2008) The climate of snow and ice as boundary condition for microbial life. In: Margesin R (ed) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 3–15Google Scholar
  12. Kuhn M (2010) The formation and dynamics of glaciers. In: Pellikka P, Rees WG (eds) Remote sensing of glaciers. CRC Press Balkema, Leiden, pp 21–39Google Scholar
  13. Kuhn M, Haslhofer J, Nickus U, Schellander H (1998) Seasonal development of ion concentration in a high alpine snow pack. Atmos Environ 32:4041–4051CrossRefGoogle Scholar
  14. Leichtfried A (2005) Schneedeckenmodellierung, Kühtai 2002/2003, Sensitivitätsstudien. Diploma thesis, University of Innsbruck, S 122Google Scholar
  15. Nickus U, Kuhn M, Novo A, Rossi GC (1998) Major element chemistry in alpine snow along a North-South transect in the eastern Alps. Atmos Environ 32:4053–4060CrossRefGoogle Scholar
  16. Nickus U, Bishop K, Erlandsson M, Evans CD, Forsius M, Laudon H, Livingstone DM, Monteith D, Thies H (2010) Direct impacts of climate change on freshwater ecosystems. In: Kernan M, Battarbee RW, Moss B (eds) Climate change impacts on freshwater impacts. Wiley-Blackwell, London, pp 38–64Google Scholar

Copyright information

© Springer-Verlag/Wien 2012

Authors and Affiliations

  1. 1.Institute of Meteorology and GeophysicsUniversity of InnsbruckInnsbruckAustria

Personalised recommendations