Skip to main content

Interfacial patterns and waves in liquid layers and thin films

  • Chapter
Pattern Formation at Interfaces

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 513))

  • 553 Accesses

Abstract

This chapter describes the phenomenology and modeling of Bénard-like patterns and waves in liquid layers, including the case of thin films for which surface tension effects are dominant. Attention is also paid to the (generalized) one-sided description of instabilities in the presence of evaporation, with or without an inert component in the gas phase. Then, the focus is on simplified models of patterned structures, and on the role of symmetry properties of the physical system considered.

Research Associate (Fonds de la Recherche Scientique — FNRS)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • H. Bénard. Les tourbillons cellulaires dans une nappe liquide transportent de la chaleur par convection en régime permanent. Ann. Chim. Phys., 23:62, 1901.

    Google Scholar 

  • M. Bestehorn and R. Friedrich. Rotationally invariant order parameter equations for natural patterns in nonequilibrium systems. Phys. Rev. E, 59:2642–2652, 1999.

    Article  MathSciNet  Google Scholar 

  • R.B. Bird, W.E. Stewart, and E.N. Lightfoot. Transport Phenomena. Wiley, 1960.

    Google Scholar 

  • M.J. Block. Surface tension as the cause of Bénard cells and surface deformation in a liquid film. Nature, 178:650–651, 1956.

    Article  Google Scholar 

  • J.P. Burelbach, S.G. Bankoff, and S.H. Davis. Nonlinear stability of evaporating/condensing liquid films. J. Fluid Mech., 195:463–494, 1988.

    Article  MATH  Google Scholar 

  • S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability. Dover, 1961.

    Google Scholar 

  • C.I. Christov and M.G. Velarde. Dissipative solitons. Physica D, 86:323–347, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Colinet, J.C. Legros, and M.G. Velarde. Nonlinear Dynamics of Surface-Tension-Driven Instabilities. Wiley-VCH, 2001.

    Google Scholar 

  • P. Colinet, A.A. Nepomnyashchy, and J.C. Legros. Multiplication of defects in hexagonal patterns. Europhys. Lett., 57:480–486, 2002.

    Article  Google Scholar 

  • M.C. Cross and P.C. Hohenberg. Pattern formation outside of equilibrium. Rev. Mod. Phys., 65:851–1112, 1993.

    Article  Google Scholar 

  • B. Echebarria and H. Riecke. Instabilities of hexagonal patterns with broken chiral symmetry. Physica D, 139:97–108, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  • K. Eckert and A. Grahn. Plumes and finger regimes driven by an exothermic interfacial reaction. Phys. Rev. Lett., 82:4436, 1999.

    Article  Google Scholar 

  • K. Eckert and A. Thess. Nonbound dislocations in hexagonal patterns: pentagon lines in surface-tension-driven Bénard convection. Phys. Rev. E, 60:4117–4124, 1999.

    Article  Google Scholar 

  • K. Eckert, M. Bestehorn, and A. Thess. Square cells in surface-tension-driven Bénard convection: experiment and theory. J. Fluid Mech., 356: 155–197, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  • K. Eckert, M. Acker, and Y. Shi. Chemical pattern formation driven by a neutralization reaction. Part I: Mechanism and basic features. Phys. Fluids, 16:385–399, 2004.

    Article  MathSciNet  Google Scholar 

  • P.L. Garcia-Ybarra, J.L. Castillo, and M.G. Velarde. A nonlinear evolution equation for Bénard-Marangoni convection with deformable boundary. Phys. Lett. A, 122:107–110, 1987a.

    Article  Google Scholar 

  • P.L. Garcia-Ybarra, J.L. Castillo, and M.G. Velarde. Bénard-Marangoni convection with a deformable interface and poorly conducting boundaries. Phys. Fluids, 30:2655–2661, 1987b.

    Article  MATH  Google Scholar 

  • A.A. Golovin, A.A. Nepomnyashchy, and L.M. Pismen. Pattern formation in large-scale Marangoni convection with deformable interface. Physica D, 81:117–147, 1995.

    Article  MATH  Google Scholar 

  • E. Guyon, J.-P. Hulin, and L. Petit. Hydrodynamique Physique. Savoirs Actuels, Editions du CNRS, 1991.

    Google Scholar 

  • B. Haut and P. Colinet. Surface-tension-driven instabilities of a pure liquid layer evaporating into an inert gas. J. Colloid Interface Sci., 285:296–305, 2005.

    Article  Google Scholar 

  • J. Israelachvili. Intermolecular and surface forces. Academic Press, 1992.

    Google Scholar 

  • E. Knobloch. Pattern selection in long-wavelength convection. Physica D, 41:450–479, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Maillard, L. Motte, A.T. Ngo, and M.P. Pileni. Rings and hexagons made of nanocrystals: a Marangoni effect. J. Phys. Chem. B, 104: 11871–11877, 2000.

    Article  Google Scholar 

  • T. Molenkamp. Marangoni Convection, Mass Transfer and Microgravity. Rijksuniversiteit Groningen, 1998.

    Google Scholar 

  • A.A. Nepomnyashchy. Order parameter equations for long-wavelength instabilities. Physica D, 86:90–95, 1995.

    Article  MathSciNet  Google Scholar 

  • A.A. Nepomnyashchy, M.G. Velarde, and P. Colinet. Interfacial Phenomena and Convection. Chapman & Hall/CRC, 2002.

    Google Scholar 

  • A. Oron, S.H. Davis, and S.G. Bankhoff. Long-scale evolution of thin liquid films. Rev. Mod. Phys., 69:931–980, 1997.

    Article  Google Scholar 

  • M. Paniconi and K.R. Elder. Stationary, dynamical and chaotic states of the two-dimensional damped Kuramoto-Sivashinsky equation. Phys. Rev. E, 56:2713–2721, 1997.

    Article  Google Scholar 

  • J.R.A. Pearson. On convection cells induced by surface tension. J. Fluid Mech., 4:489, 1958.

    Article  MATH  Google Scholar 

  • J. Pontes, C.I. Christov, and M.G. Velarde. Numerical study of patterns and their evolution in finite geometries. Int. J. Bif. Chaos, 6:1883–1890, 1996.

    Article  MATH  Google Scholar 

  • J. Pontes, C.I. Christov, and M.G. Velarde. Numerical approach to pattern selection in a model problem for Bénard convection in finite fluid layer. Ann. Univ. Sofia, 93:157–175, 1999.

    Google Scholar 

  • A.Ye. Rednikov and M.G. Velarde. Nonlinear waves and (dissipative) solitons in thin liquid layers. In H.-C. Chang, editor, Nonlinear Waves in Multi-Phase Flow. Kluwer, 2000.

    Google Scholar 

  • A.Ye. Rednikov, P. Colinet, M.G. Velarde, and J.C. Legros. Rayleigh-Marangoni oscillatory instability in a horizontal liquid layer heated from above: coupling and mode-mixing of internal and surface dilational waves. J. Fluid Mech., 405:57–77, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  • A.Ye. Rednikov, P. Colinet, M.G. Velarde, and J.C. Legros. Oscillatory thermocapillary instability in a liquid layer with deformable open surface: capillary-gravity waves, longitudinal waves and mode-mixing. J. Non-Eq. Thermodyn., 25:381–405, 2001.

    Google Scholar 

  • M. F. Schatz and G.P. Neitzel. Experiments on thermocapillary instabilities. Annu. Rev. Fluid Mech., 33:93–127, 2001.

    Article  Google Scholar 

  • L. Shtilman and G. Sivashinsky. Hexagonal structure of large-scale Marangoni convection. Physica D, 52:477–488, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  • G.I. Sivashinsky. Nonlinear analysis of hydrodynamic instability of laminar flames. part 1. derivation of basic equations. Acta Astronautica, 4:1177–1206, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  • G.I. Sivashinsky. On cellular instability in the solidification of a dilute binary alloy. Physica D, 8:243–248, 1983.

    Article  MathSciNet  Google Scholar 

  • P. Stephan and C.A. Busse. Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls. Int. J. Heat Mass Transfer, 35: 383–391, 1992.

    Article  Google Scholar 

  • J.B. Swift and P.C. Hohenberg. Hydrodynamic fluctuations at the convective instability. Phys. Rev. A, 15:319, 1977.

    Article  Google Scholar 

  • A. Thess and S.A. Orszag. Surface-tension-driven Bénard convection at infinite Prandtl number. J. Fluid Mech., 283:201–230, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Thess, D. Spirn, and B. Jüttner. Viscous flow at infinite Marangoni number. Phys. Rev. Lett., 75:4614–4617, 1995.

    Article  Google Scholar 

  • J. Thomson. On certain curious motions observable on the surfaces of wine and other alcoholic liquours. Philosophical Magazine, 10:330, 1855.

    Google Scholar 

  • J.S. Turner. Buoyancy Effects in Fluids. Cambridge University Press, 1973.

    Google Scholar 

  • S.J. VanHook, M.F. Schatz, J.B. Swift, W.D. McCormick, and H.L. Swin-ney. Long-wavelength surface-tension-driven Bénard convection: experiment and theory. J. Fluid Mech., 345:45, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  • L. Weh and H. Linde. Marangoni-stress-driven’ solitonic’ (periodic) wave trains rotating in an annular container during heat transfer. J. Colloid Interface Sci., 187:159–165, 1997.

    Article  Google Scholar 

  • A. Wierschem, H. Linde, and M.G. Velarde. Internal waves excited by the Marangoni effect. Phys. Rev. E, 62:6522–6530, 2000.

    Article  Google Scholar 

  • Y.-N. Young and H. Riecke. Penta-hepta defect chaos in a model for rotating hexagonal convection. Phys. Rev. Lett., 90:134502, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 CISM, Udine

About this chapter

Cite this chapter

Colinet, P. (2010). Interfacial patterns and waves in liquid layers and thin films. In: Colinet, P., Nepomnyashchy, A. (eds) Pattern Formation at Interfaces. CISM International Centre for Mechanical Sciences, vol 513. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0125-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0125-4_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0124-7

  • Online ISBN: 978-3-7091-0125-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics