Skip to main content

Methods of Calibration of Spectral Instruments in Arbitrary Units

  • Chapter
  • First Online:
Radiometry in Modern Scientific Experiments
  • 846 Accesses

Abstract

This chapter deals with calibration methods for system designed to make measurements of radiation spectra of extended, point and narrow cylinder light sources in the near IR, visible, and UV spectral ranges using strip lamps, quartz tungsten–halogen lamps, and deuterium lamps. Calibration techniques are also considered here, which use well-known radiation spectra and calibration methods in the vacuum UV spectral range. The methods using extended hydrogen-discharge lamps in the vacuum UV spectral range are explained here in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Optical aberration. http://en.wikipedia.org/wiki/Optical_aberration

  2. Chromatic aberration. http://en.wikipedia.org/wiki/Chromatic_aberration

  3. Rabek, J.F.: Experimental Methods in Photochemistry and Photophysics. Wiley, Chichester (1982)

    Google Scholar 

  4. Golovlev, N.L., Chistyakov, V.A., Shevchenko, VYa: SHIFT-2 infrared spectrocomparator. Meas. Tech. 37, 1377–1380 (1994)

    Article  Google Scholar 

  5. Kaye, G.W., Laby, T.H.: Tables of Physical and Chemical Constants. Longmans Green, London (1959)

    Google Scholar 

  6. Zaidel, A.N., Shreider, E.Ya.: Vakuumnaya Spectroskopiya i ee Primenenie (Vacuum Spectroscopy and Its Application). Nauka, Moscow (1976) (in Russian) [see also Zaidel, A.N., Shreider, E.Ya.: Vacuum Ultraviolet Spectroscopy. Humphrey, Ann Arbor (1970)]

    Google Scholar 

  7. WS-1 diffuse reflectance standard. http://www.oceanoptics.com/Products/ws1diffrefstan.asp

  8. Lambertian_reflectance. http://en.wikipedia.org/wiki/Lambertian_reflectance

  9. Gibson, C.E., Ma, C.K., Hartmann, J.: Decreasing dependence of the calibration of the tungsten strip lamp on the temperature of the lamp base with increasing filament length. Metrologia 42, 383–388 (2005)

    Article  Google Scholar 

  10. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. 1. Addison-Wesley, London (1963)

    Google Scholar 

  11. Thin lens_equation. http://en.wikipedia.org/wiki/Lens_(optics)#Thin_lens_equation

  12. Sosman, R.B.: The Properties of Silica. Chemical Catalog, New York (1927)

    Google Scholar 

  13. Lawley, K., Jewsbury, P., Ridley, T., Langridge-Smith, P., Donovan, R.J.: Einstein A-coefficients and transition dipole moments for some ion-pair to valence transitions in I2. Mol. Phys. 75, 811–828 (1992)

    Article  CAS  Google Scholar 

  14. Holmes, A.J., Lawley, K., Ridley, T., Donovan, R.J., Langridge-Smith, P.R.R.: Optical-optical double resonance (OODR) studies of the halogen ion-pair states. Part 2. The f(0 +g )→B(0 +u ) transition dipole moment function in I2. J. Chem. Soc. Faraday Trans. 87, 15–18 (1991)

    Article  CAS  Google Scholar 

  15. Jewsbury, P.J., Lawley, K.P., Ridley, T., Donovan, R.J.: Optical-optical double resonance studies of the halogen ion-pair states. Part 3. The F(0 +u )→X(0 +g ) transition dipole moment function in I2. J. Chem. Soc. Faraday Trans. 88, 1599–1603 (1992)

    Article  CAS  Google Scholar 

  16. Wilson, P.J., Ridley, T., Lawley, K.P., Donovan, R.J.: Double resonance nozzle cooled spectroscopy (DRINCS) of the E(3P2), f(3P0) and f′(1D2) 0 +g ion-pair states of I2. Chem. Phys. 182, 325 (1994)

    Article  CAS  Google Scholar 

  17. Bibinov, N.K., Davydov, V.G., Fateev, A.A., Kokh, D.B., Lugovoj, E.V., Ottinger, Ch, Pravilov, A.M.: The transition dipole moment function of the chlorine E0 + g - B0 + u system. J. Chem. Phys. 109, 10864–10872 (1998)

    Article  CAS  Google Scholar 

  18. Akopyan, M.E., Bibinov, N.K., Kokh, D.B., Pravilov, A.M., Stepanov, M.B.: The iodine E0 + g - B0 + u and D0 + u - X0 + g transition dipole moment functions. Chem. Phys. 242, 253–261 (1999)

    Article  CAS  Google Scholar 

  19. Bibinov, N.K., Fateev, A.A., Kokh, D.B., Lugovoj, E.V., Pravilov, A.M.: Optical transitions from the chlorine 0 + u (3P2) state. Chem. Phys. 254, 89–98 (2000)

    Article  CAS  Google Scholar 

  20. Akopyan, M.E., Bibinov, N.K., Kokh, D.B., Pravilov, A.M., Sharova, O.L., Stepanov, M.B.: The approach-induced I2(EO +g \( {\longrightarrow^{\hskip-12pt\hbox{M\hskip 1pt}}} \) DO +u ) transitions, M=He, Ar, I2, N2, CF4. Chem. Phys. 287, 399–410 (2003)

    Article  CAS  Google Scholar 

  21. Bibinov, N.K., Malinina, O.L., Pravilov, A.M., Stepanov, M.B., Zakharova, A.A.: The approach-induced and collision-induced I2(EO +g \( {\longrightarrow^{{\hskip -10pt\mathop {\hbox{I}}}_2\hskip 4pt ({\hbox{X)}}}} \) DO +u ) transitions from low, vE=8–23 vibronic levels of the I2(E) state. Chem. Phys. 277, 179–189 (2002)

    Article  CAS  Google Scholar 

  22. Akopyan, M.E., Pravilov, A.M., Stepanov, M.B., Zakharova, A.A.: The collision-induced I2(E0 +g \( \overset{M}{\longleftrightarrow} \) D0 +u ) transition, M=He, Ar, N2, CF4. Chem. Phys. 263, 459–470 (2001)

    Article  CAS  Google Scholar 

  23. Tscherbul, T.V., Buchachenko, A.A., Akopyan, M.E., Poretsky, S.A., Pravilov, A.M., Stephenson, T.A.: Collision-induced non-adiabatic transitions between the ion-pair states of molecular iodine: a challenge for experiment and theory. Phys. Chem. Chem. Phys. 6, 3201–3214 (2004)

    Article  CAS  Google Scholar 

  24. Tellinghuisen, J.: The \( D(\mathop 0\nolimits_u^{+} ) \) state of I2: analysis by quantum simulation of bound-free D – X fluorescence. Can. J. Phys. 62, 1933–1940 (1984)

    Article  CAS  Google Scholar 

  25. Akopyan, M.E., Novikova, IYu, Poretsky, S.A., Pravilov, A.M., Smolin, A.G., Fedorova, T.V.: Dipole moment functions for electronic transitions from ion-pair states of the second tier of molecular iodine. Opt. Spec. 99, 36–42 (2005)

    Article  CAS  Google Scholar 

  26. Akopyan, M.E., Baturo, V.V., Lukashov, S.S., Poretsky, S.A., Pravilov, A.M.: Dipole moment functions of the iodine D’2g–A’2u and \( {\hbox{D0}}_{\rm{u}}^{+} - {{a^\prime}}\mathop {0}_{\rm{g}}^{+} \) transitions (submitted to J. Phys. B: Atom. Mol. Opt. Phys.)

    Google Scholar 

  27. Akopyan, M.E., Khadikova, E.I., Lukashov, S.S., Poretsky, S.A., Pravilov, A.M., Buchachenko, A.A., Suleimanov, Yu.V.: Dynamics and mechanism of the non-adiabatic transitions from the ungerade \( \mathop I\nolimits_2 (D\mathop 0\nolimits_u^{+} ) \)state induced by collisions with rare gas atoms. J. Chem. Phys. 133, 244304-1-10 (2010)

    Google Scholar 

  28. Carraro, L., Cortiana, M., Puiatti, M.E., Sattin, F., Scarin, P., Valisa, M.: Absolute calibration of a Czerny-Turner spectrometer in the range 1200–7000 Å. Rev. Sci. Instrum. 66, 613–615 (1995)

    Article  CAS  Google Scholar 

  29. Zaidel, A.N., Shreider, E.Ya: Vacuum Ultraviolet Spectroscopy. Humphrey, Ann Arbor (1970)

    Google Scholar 

  30. Vilesov, F.I., Akopyan, M.E., Kleymenov, V.I.: Improvement of electrical and radiation parameters of hydrogen lamps working at high voltage. Pribory i Tekhnika Eksperimenta (USSR) (Instr. Exp. Tech.) 6, 150–153 (1963)

    Google Scholar 

  31. Model 632 Deuterium Light Source with Magnesium Fluoride Window for 115 to 380-nm. http://www.mcphersoninc.com/lightsources/model632lightsource.htm

  32. Samsom, J.A.R.: Efficiency of aluminized gratings in the spectral range 555 to 1600 Å. J. Opt. Soc. Amer. 52, 525–528 (1962)

    Article  Google Scholar 

  33. Shishatskaya, L.P., Yakovlev, S.A., Volkova, G.A.: VUV lamps with a large emitting surface. J. Opt. Technol. 65, 1025–1028 (1998)

    Google Scholar 

  34. Bibinov, N.K., Bolshukhin, D.O., Kokh, D.B., Pravilov, A.M., Vinogradov, I.P., Wiesemann, K.: Absolute calibration of the efficiency of a VUV-monochromator/detector system in the range of 110–450 nm. Meas. Sci. Technol. 8, 773–781 (1997)

    Article  CAS  Google Scholar 

  35. Boldt, G.: Absolute intensity calibration methods in the vacuum UV region. Ultraviolet Stellar spectra and related ground-based observations. In: Hounziau, L., Butler H.E. (ed.) Proceedings from IAU Symposium No. 36, Lunteren, Netherlands (1968)

    Google Scholar 

  36. Daltrini, A.M., Machida, M.: Modified branching ratio methods for absolute intensity calibration in VUV spectroscopy. IEEE Trans. Plasma Sci. 33, 1961–1967 (2005)

    Article  CAS  Google Scholar 

  37. Mumma, M.J.: Molecular branching-ratio method for intensity calibration of optical system in the vacuum ultraviolet. J. Opt. Soc. Amer. 62, 1459–1466 (1972)

    Article  CAS  Google Scholar 

  38. Ando, K., Okazaki, K., Mori, K.: Intensity calibration of normal incidence monochromator by the double monochromator method. Jpn. J. Appl. Phys. 18, 1833–1837 (1979)

    Article  CAS  Google Scholar 

  39. Golde, M.F., Trush, B.A.: Vacuum ultraviolet emission by active nitrogen. I. The formation and removal of N2(a1Πg). Proc. Roy. Soc. A330, 79–85 (1972)

    Google Scholar 

  40. Pravilov, A.M.: Fotoprozessy v Molekulyarnykh Gasakh (Photoprocesses in Molecular Gases). Energoatomizdat, Moscow (1992)

    Google Scholar 

  41. Michels, D.J., Mikes, T.L., Hunter, W.R.: Optical grating evaluator: a device for detailed measurements of diffraction grating efficiencies in the vacuum ultraviolet. Appl. Opt. 13, 1223–1229 (1974)

    Article  CAS  Google Scholar 

  42. Reevs, E.M., Parkinson, W.H.: Efficiencies of gold and platinum grating in the vacuum ultraviolet. J. Opt. Soc. Amer. 53, 941–945 (1963)

    Article  Google Scholar 

  43. Adjello, J.M., Shemansky, D., Kwok, T.L., Yung, Y.L.: Studies of extreme-ultraviolet emission from Rydberg series of H2 by electron impact. Phys. Rev. A29, 636–653 (1984)

    Google Scholar 

  44. Fateev, A.A., Fink, E.H., Pravilov, A.M.: Simple method of spectrometer/detector sensitivity calibrations in the 210–1150 nm range. Meas. Sci. Technol. 10, 182–189 (1999)

    Article  CAS  Google Scholar 

  45. Kenner, R.D., Ogryzlo, E.A.: Chemiluminescence in gas phase reactions. In: Burr, J.G. (ed.) Chemi- and Bioluminescence, pp. 45–185. Dekker, New York (1985)

    Google Scholar 

  46. Matveev, A.A., Pravilov, A.M., Vilesov, A.F.: Anomalously large isotope effect in the chemiluminescence from N(4S)+O(3P) recombination Chem. Phys. Lett. 217, 582–588 (1994)

    CAS  Google Scholar 

  47. Vilesov, A.F., Pravilov, A.M., Sidorov, I.I., Smirnova, L.G.: Spectral distribution of the radiative recombination rate constant of the nitrogen atoms first positive band system. Sov. J. Chem. Phys. 2, 2284–2296 (1985)

    Google Scholar 

  48. Bystrov, D.S., Vilesov, A.F., Pravilov, A.M., Smirnova, L.G.: Chemiluminescence kinetics in first positive and Y systems of N2 during recombination of N(4S) nitrogen atoms. Sov. J. Chem. Phys. 6, 2306–2325 (1990)

    Google Scholar 

  49. Vilesov, A.F., Pravilov, A.M., Smirnova, L.G.: Temperature dependence of chemiluminescence in the first positive and Y-systems of N2 induced by recombination of N(4S) atoms. Sov. J. Chem. Phys. 6, 2797–2810 (1990)

    Google Scholar 

  50. Sutoh, M., Morioka, Y., Nakamura, M.: Absolute rate constant for the chemiluminescent reaction of atomic oxygen with nitric oxide. J. Chem. Phys. 72, 20–24 (1980)

    Article  CAS  Google Scholar 

  51. Woolsey, G.A., Lee, D.H., Slafer, W.D.: Measurement of the rate constant for NO-O chemiluminescence using a calibrated piston source of light. J. Chem. Phys. 67, 1220–1224 (1977)

    Article  CAS  Google Scholar 

  52. Vanpee, M., Hill, R.D., Kineyko, W.R.: Absolute rate constant measurement for the radiative combination of atomic oxygen with nitric oxide. AIAA J. 9, 135–138 (1971)

    Article  CAS  Google Scholar 

  53. Fontijn, A., Meyer, C.B., Schiff, H.I.: Absolute quantum yield measurements of the NO-O reaction and its use as a standart for chemiluminescent reactions. J. Chem. Phys. 40, 64–70 (1964)

    Article  CAS  Google Scholar 

  54. Pravilov, A.M., Smirnova, L.G.: The spectral distributions chemiluminescence rate constant in the O(3P)+CO (+M) and O(3P)+NO (+He) reactions. Kinet. Catal. 19, 902–908 (1978)

    Google Scholar 

  55. Luque, J., Crosley, D.R.: Electronic transition moment for the B2Π-X2Π system of NO. J. Quant. Spectrosc. Radiat. Transfer 53, 189–200 (1995)

    Article  CAS  Google Scholar 

  56. Greenblatt, G.D., Ravishankara, A.R.: Collisional quenching of NO(A, v’=0) by various gases. Chem. Phys. Lett. 136, 501–503 (1987)

    Article  CAS  Google Scholar 

  57. Rotem, A., Rosenwaks, S.: Laser induced fluorescence studies of molecular nitrogen. Opt. Eng. 22, 564–570 (1983)

    Article  CAS  Google Scholar 

  58. Piper, L.G., Cowles, L.M., Rawlins, W.T.: State-to-state exitation of NO(A2Σ+, v’=0,1,2) by N2(A3Σ+ u) v’=0,1,2). J. Chem. Phys. 86, 3369–3378 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Pravilov .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Pravilov, A.M. (2011). Methods of Calibration of Spectral Instruments in Arbitrary Units. In: Radiometry in Modern Scientific Experiments. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0104-9_5

Download citation

Publish with us

Policies and ethics