Skip to main content

Laser Surface Modification for Protection Against Wear

  • Chapter
  • First Online:

Abstract

With the advent of laser technology during the past few decades, surface modification using lasers has been used extensively. It was way back in the 1960s when Maiman [1] first invented a working ruby laser. This was followed by the diode laser proposed by Basov [2]. In 1962, diode laser was demonstrated independently by Hall et al. [3] at General Electric, Nathan et al. [4] at IBM and by Quist et al. [5] at MITs Lincoln Laboratory. The first CO2 laser was invented by C.K.N. Patel soon thereafter in 1964 while working in Bell Labs [6]. In the same year Nd–YAG laser was also invented in Bell Labs. Ewing and Brau [7] came up with the excimer laser in 1974 in Avco Everett Laboratory. A free electron laser was first demonstrated by Madley’s group at Stanford University. As a result of above developments, today optical energy is available in an easily controllable form and has therefore been gainfully initialized for various materials processing operations. The mastery gained over the use of laser initially as a tool for routine operations such as cutting drilling and welding has now enabled realisation of various surface modification approaches based on high power lasers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Maiman TH (1960) Nature, 6 August

    Google Scholar 

  2. Basov NG, Kroklin ON, Popov YM (1961) Sov Phys JETP 13:1320

    Google Scholar 

  3. Hall RN, Fenner GE, Kingsley JD, Soltys TJ, Carlson RO (1962) Phys Rev Lett 9:366

    CAS  Google Scholar 

  4. Nathan MI et al (1962) Appl Phys Lett 1:62

    CAS  Google Scholar 

  5. Quist TM et al (1962) Appl Phys Lett 1:91

    CAS  Google Scholar 

  6. Patel CKN (1964) Phys Rev A 136:1187

    CAS  Google Scholar 

  7. Ewing JJ, Brau CA (1975) Appl Phys Lett 27:330

    Google Scholar 

  8. Chande T, Majumder J (1983) Metall Trans B14:181

    Google Scholar 

  9. Roy M, Bharti A (2000) In: Proceedings of 3rd workshop on application of laser in mechanical industry, February, Jadavpur, Calcutta

    Google Scholar 

  10. Bharti A, Sivakumar R, Goel DB (1989) J Laser Appl 5:43

    Google Scholar 

  11. Kovalemko VS, Volgin VI, Mixhailov VV (1977) Tech Organ Proizvod 3:50

    Google Scholar 

  12. Xue L, Islam MU, Koul AK, Wallace W, Bibby M (1997) Mater Manuf Process 12:799

    CAS  Google Scholar 

  13. Komvopoulos K, Nagarathnam K (1990) J Eng Mater Technol 112:131

    CAS  Google Scholar 

  14. Morisige N (1997) In: Khanna AS, Totlani MK, Singh SK (eds) Corrosion and it’s control. Elsevier, Bombay

    Google Scholar 

  15. Ganamuthu DS (1980) Opt Eng 19:783

    Google Scholar 

  16. Jain AK, Kulkarni VK, Sood DK (1981) Appl Phys 25:127

    CAS  Google Scholar 

  17. Bergman HW, Mordike BL (1983) Z Werkstofftech 14:228

    Google Scholar 

  18. Kear BH, Breinan EM (1977) In: Proceedings of Sheffield international conference on solidification and casting, Sheffield

    Google Scholar 

  19. Singh J, Mazumder J (1986) Mater Sci Technol 2(7):709

    CAS  Google Scholar 

  20. Steen WM, Courtney CGH (1980) Met Technol June

    Google Scholar 

  21. Draper CW, Ewing CA (1984) J Mater Sci 19:3815

    CAS  Google Scholar 

  22. Draper CW, Poate JM (1985) J Int Met Rev 30:85

    CAS  Google Scholar 

  23. Jouvard JM, Grevey D, Lemoine F, Vannes AB (1997) J Phys (France) III 7:2265

    CAS  Google Scholar 

  24. Frenk A, Vandyoussefi M, Wagnière J-D, Zryd A, Kurz W (1997) Metall Mater Trans 28B:507

    Google Scholar 

  25. Li Y, Ma J (1997) Surf Coat Technol 90:1

    CAS  Google Scholar 

  26. Lin J (1996) J Laser Appl 12:28

    Google Scholar 

  27. Hayhurst P, Tuominen J, Mantyla J, Vuoristo P (2002) Proceedings of ICALEO 2002, Phoenix, AZ, October, LIA, paper 1201

    Google Scholar 

  28. Fellowes FC, Steen WM, Coley KS (1989) Proc. conf., IFHT, Lisbon, Portugal, September, p 435

    Google Scholar 

  29. Ayers JD, Schaefer RJ, Robey WP (1980) J Met Aug:19

    Google Scholar 

  30. Kloosterman AB, De Hosson JThM (1997) In: Aliabadi MH, Berbbia CA (eds) Surface treatment ’97. Computational Mechanics Publications, Southampton, p 286

    Google Scholar 

  31. Hlawka F, Song GQ, Cornet A (1996) J Phys (France) IV Colloque C4 6:123

    Google Scholar 

  32. Hu C, Xin H, Baker TN (1995) J Mater Sci 30:5985

    CAS  Google Scholar 

  33. Ashby MF, Easterling KE (1984) Acta Metall 32:1935

    CAS  Google Scholar 

  34. Cline J, Anthony H (1977) J Appl Phys 48:3895

    CAS  Google Scholar 

  35. Davis M, Kapadia P, Dowden J, Steen WM, Courtney CHG (1986) J Phys D Appl Phys 19:1981

    CAS  Google Scholar 

  36. Bradley JR (1988) J Phys D Appl Phys 21:834

    CAS  Google Scholar 

  37. Das DK, Roy M, Singh AK, Sundararajan G (1996) Mater Sci Technol 12:295

    CAS  Google Scholar 

  38. Wang Y, Kovacevic R, Liu J (1998) Wear 221:47

    CAS  Google Scholar 

  39. Bharti A, Roy M, Sundararajan G (1992) In: Proceedings of 4th European conference on laser application, October, p 299

    Google Scholar 

  40. Staiaa MH, Cruza UM, Dahotre NB (2000) Thin Solid Films 377–378:665

    Google Scholar 

  41. Man HC, Zhang S, Cheng FT, Yue TM (2002) Scr Mater 46:229

    CAS  Google Scholar 

  42. Kwok CT, Cheng FT, Man HC (1998) Surf Coat Technol 107:31

    CAS  Google Scholar 

  43. Tassin C, Laroudie F, Pons M, Lelait L (1996) Surf Coat Technol 80:207

    CAS  Google Scholar 

  44. Fu Y, Batchelor AW (1998) Surf Coat Technol 102:119

    CAS  Google Scholar 

  45. Khedkar J, Khanna AS, Gupt KM (1997) Wear 205:220

    CAS  Google Scholar 

  46. Shamanian M, Mousavi Abarghouie SMR, Mousavi Pour SR (2010) Mater Des 31:2760

    CAS  Google Scholar 

  47. Grenier M, Dube D, Adnot A, Fishet M (1997) Wear 210:127

    CAS  Google Scholar 

  48. Guo B, Zhou J, Zhang S, Zhou H, Pu Y, Chen J (2008) Surf Coat Technol 202:4121

    CAS  Google Scholar 

  49. Staia MH, Cruz M, Dahotre NB (2001) Wear 251:1459

    Google Scholar 

  50. Dutta Majumdar J, Manna I (1999) Mater Sci Eng A268:227

    CAS  Google Scholar 

  51. Dutta Majumdar J, Manna I (1999) Mater Sci Eng A267:50

    CAS  Google Scholar 

  52. Dutta Majumdar J, Mordike BL, Manna I (2000) Wear 242:18

    Google Scholar 

  53. Manna I, Dutta Majumdar J, Ramesh Chandra B, Nayak S, Dahotre NB (2006) Surf Coat Technol 201:434

    CAS  Google Scholar 

  54. Persson DHE, Jacobson S, Hogmark S (2003) Wear 255:498

    CAS  Google Scholar 

  55. Jiang P, He XL, Li XX, Yu LG, Wang HM (2000) Surf Coat Technol 130:24

    CAS  Google Scholar 

  56. Hutchings IM (1992) Tribology. Edward Arnold, London

    Google Scholar 

  57. Rabinowicz E (1965) Friction and wear of materials. Wiley, New York

    Google Scholar 

  58. Lim SC, Ashby MF (1987) Acta Metall 35:11

    Google Scholar 

  59. Radek N, Bartkowiak K (2011) Phys Procedia 12:499

    CAS  Google Scholar 

  60. Quin TFJ, Sullivan JL, Rowson DM (1984) Wear 94:175

    Google Scholar 

  61. Rowson DM, Quinn TFJ (1980) J Phys D Appl Phys 13:209

    CAS  Google Scholar 

  62. Quin TFJ (1998) Wear 216:262–275

    Google Scholar 

  63. Malgaord J, Srivastaba VK (1977) Wear 41:263

    Google Scholar 

  64. Roy M, Ray KK, Sundararajan G (1999) Oxid Met 50

    Google Scholar 

  65. Hirose A, Ueda T, Kobayashi KF (1993) Mater Sci Eng 160A:143

    Google Scholar 

  66. Tau YH, Doong JL (1989) Wear 132:9

    Google Scholar 

  67. Isawane DT, Ma U (1989) Wear 129:123

    Google Scholar 

  68. Hou PY, Stringer J (1992) Oxid Met 38:323

    CAS  Google Scholar 

  69. Sigler DR (1993) Oxid Met 40:555

    CAS  Google Scholar 

  70. Bennett MJ, Haulton MR (1990) In: Bachelet E (ed) High temperature materials for power engineering. Kluwer Academic, Dordrecht, p 189

    Google Scholar 

  71. Tatlock GJ, Hard TJ (1984) Oxid Met 22:201

    CAS  Google Scholar 

  72. Gobel M, Rahmel A, Schertzc M (1993) Oxid Met 3–4:231

    Google Scholar 

  73. Sun JH, Jang HC, Chang E (1994) Surf Coat Technol 64:195

    CAS  Google Scholar 

  74. Vernon-Perry KD, Crovenor CRM, Needhan N, English T (1988) Mater Sci Technol 4:461

    Google Scholar 

  75. Pint BA (1997) Oxid Met 48:303

    CAS  Google Scholar 

  76. Ramnarayanan TA, Raghavan M, Petkvichuton R (1984) J Electrochem Soc 131:923

    Google Scholar 

  77. Forest C, Davidson JH (1995) Oxid Met 43:479

    CAS  Google Scholar 

  78. Walker A, Flower HM, West DRF (1985) J Mater Sci 20:989

    CAS  Google Scholar 

  79. Walker A, West DRF, Steen WM (1984) Mater Technol 11:399

    CAS  Google Scholar 

  80. Mordike BL, Bergmann HW, Grob N (1983) Z Werkstofftech 14:253

    Google Scholar 

  81. Shehata GH, Moussa AMA, Molian PA (1993) Wear 171:199

    Google Scholar 

  82. Nakata K, Tomoto K, Matsuda F (1996) Trans Jpn Weld Res Inst 25:37

    CAS  Google Scholar 

  83. Galun R, Weisheit A, Mordike BL (1996) J Laser Appl 8:299

    CAS  Google Scholar 

  84. Li R, Ferreira MJS, Anjos M, Vilar R (1996) Surf Coat Technol 88:90

    Google Scholar 

  85. Li R, Ferreira MJS, Anjos M, Vilar R (1996) Surf Coat Technol 88:96

    Google Scholar 

  86. Anjos M, Vilar R, Qui YY (1997) Surf Coat Technol 92:142

    CAS  Google Scholar 

  87. Belmondo A, Castagna M (1979) Thin Solid Films 64:249

    CAS  Google Scholar 

  88. Singh J, Majumder J (1987) Metall Trans 18:313

    Google Scholar 

  89. Folkes JA, Shibata K (1994) J Laser Appl 6:88

    CAS  Google Scholar 

  90. Roy A, Manna I (2001) Mater Sci Eng A297:85

    CAS  Google Scholar 

  91. Basu A, Chakraborty J, Shariff SM, Padmanabham G, Joshi SV, Sundararajan G, Dutta Majumdara J, Manna I (2007) Scr Mater 56:887

    CAS  Google Scholar 

  92. Padmavathi C, Sarin Sundar JK, Joshi SV, Prasad Rao K (2006) Trans Indian Inst Met 59:99

    CAS  Google Scholar 

  93. Staia MH, Cruz M, Dahotre NB (2000) Thin Solid Films 377–378:665

    Google Scholar 

  94. Ghosh K, McCay MH, Dahotre NB (1999) J Mater Process Technol 88:169

    Google Scholar 

  95. Rieker C, Morris DF, Steffen J (1989) Mater Sci Technol 5:590

    CAS  Google Scholar 

  96. Boas M, Bamberger M (1988) Wear 126:197

    CAS  Google Scholar 

  97. Sundararajan G, Schewmon PG (1983) Wear 84:237

    Google Scholar 

  98. Roy M, Das DK, Sivakumar R, Sundararajan G (1991) In: Darakadasa ES, Seshan S, Abraham KP (eds) Proceedings of the 2nd international conference on aluminium, July, Bangalore, p 947

    Google Scholar 

  99. Levy AV, Slamovich E, Jee N (1986) Wear 110:117

    CAS  Google Scholar 

  100. McIntyre M (1983) In: Metzbower EA (ed) Applications of lasers in material processing. ASM, Materials Park, OH

    Google Scholar 

  101. Regis V, Bracchetti M, Cerri W, Angelo DD, Mor GP (1990) In: Proceedings of high temperature materials for power engineering, September, Liege. Kluwer Academic, Dordrecht

    Google Scholar 

  102. Tanaka K, Saito T, Shimura Y, Mori K, Kawasaki M, Koyama M, Murase H (1993) J Jpn Inst Met 57:1114

    CAS  Google Scholar 

  103. Man HC, Cui ZD, Yue TM (2002) J Laser Appl 14:242

    CAS  Google Scholar 

  104. Lusquinos F, Pou J, Arias JL, Boutinguiza M, Leon B, Perez-Armor M (2001) In: Proceedings of ICALEO 2001, October, Jacksonville, FA, LIA, paper 1003

    Google Scholar 

  105. Liu Z, Watkins KG, Steen WM (1999) J Laser Appl 11:136

    Google Scholar 

  106. Liu Z, Pirch N, Gasser A, Watkins KG, Hatherley PG (2001) J Laser Appl 13:231

    CAS  Google Scholar 

  107. Anderson T (2002) Proceedings of ICALEO 2002, October, Pheonix, AZ, LIA, paper 1505

    Google Scholar 

  108. Padmavathi C, Sarin Sundar JK, Joshi SV, Prasad Rao K (2006) Mater Sci Technol 22:1

    Google Scholar 

  109. Zaplatynski I (1982) Thin Solid Film 95:275

    Google Scholar 

  110. Joshi SV, Sundararajan G (1998) In: Dahotre NB (ed) Lasers in surface engineering. ASM, Materials Park, OH, p 121

    Google Scholar 

  111. Pawlowski L (1999) J Therm Spray Technol 8(2):279

    CAS  Google Scholar 

  112. Voss A, Funken J, Alunovic M, Sung H, Kreutz EW (1992) Thin Solid Film 220:116

    CAS  Google Scholar 

  113. Funken J, Kreutz EW, Krische M, Sung H, Voss A, Erkens G, Lemmer O, Leyendeker T (1992) Surf Coat Technol 52:221

    CAS  Google Scholar 

  114. Oliveira JC, Paiva P, Oliveira MN, Conde O (1999) Appl Surf Sci 138–139:159

    Google Scholar 

  115. Wang Q, Schliesing R, Zacharias H, Buck V (1999) Appl Surf Sci 138–139:429

    Google Scholar 

  116. Zouari I, Lapicque F, Calvo M, Cabrera M (1990) Chem Eng Sci 45:2467

    CAS  Google Scholar 

  117. Grishko VI, Duley WW, Gu ZH, Fahidy TZ (2001) Electrochim Acta 47(4):643

    CAS  Google Scholar 

  118. Rebro PA, Shin YC, Incropera FP (2004) Int J Mach Tool Manuf 44(7–8):677

    Google Scholar 

  119. Ding H, Shin YC (2010) Int J Mach Tool Manuf 50(1):106

    Google Scholar 

  120. Bandyopadhyay S, Sarin Sundar JK, Sundararajan G, Joshi SV (2002) J Mater Process Technol 127:83

    CAS  Google Scholar 

  121. Tam SC, Willams R, Yang LJ, Jana S, Lim LEN, Lau MWS (1990) J Mater Process Technol 23:177

    Google Scholar 

  122. Pajak PT, De Silva AKM, McGough JA, Harrison DK (2004) J Mater Process Technol 149:512

    CAS  Google Scholar 

  123. Thomson G, Pridhan M (1998) Opt Laser Technol 30:191

    Google Scholar 

  124. Hoffmann E, Backes G, Gasser A, Kreutz EW, Stromeyer R, Wissenbach K (1996) Laser und Optoelektronik 28(3):59

    Google Scholar 

  125. Graydon O (1998) Opt Lasers Eng Feb:33

    Google Scholar 

Download references

Acknowledgement

Various colleagues of one of the authors (SJ) who have been actively involved in R&D as well as application development efforts highlighted in this chapter from Center for Laser Processing of Materials at International Advanced Research Center for Powder Metallurgy and New Materials are sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Joshi, S.V., Roy, M. (2013). Laser Surface Modification for Protection Against Wear. In: Roy, M. (eds) Surface Engineering for Enhanced Performance against Wear. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0101-8_7

Download citation

Publish with us

Policies and ethics