Advertisement

Literaturverzeichnis

  • Hermann Kämmerer
  • Klaus Standfuß
  • Jürgen Stegemann
Chapter
  • 8 Downloads
Part of the Forschungsberichte des Landes Nordrhein-Westfalen book series (FOLANW)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referenzen

  1. [1]
    Aitken, R. S., and A. E. Clark-Kennedy, On the fluctuation in the composition of the alveolar air during the respiratory cycle in muscular exercise. J. Physiol. (Lond.) 65, 389 (1928)Google Scholar
  2. [2]
    Anthonisen, N. R., M. B. Dolovich and D. V. Bates, Steady state measurement of regional ventilation to perfusion ratios in normal man. J. clin. Invest. 45, 1349 (1966).PubMedCrossRefGoogle Scholar
  3. [3]
    Askrog, V., Changes in aA-CO2-difference and pulmonary artery pressure in anesthetized man. J. appl. Physiol. 21, 1299 (1966).PubMedGoogle Scholar
  4. [4]
    Asmussen, E., and M. Nielsen, Physiological dead space and alveolar gas pressures at rest and during muscular exercise. Acta physiol. scand. 38, 1 (1957).CrossRefGoogle Scholar
  5. [5]
    Astrup, P., A simple electrometric technique for the determination of carbon dioxide tension in blood and plasma, total content in »seperated« plasma at a fixed carbon dioxide tension (40 mm Hg). Scand J. Clin. & Lab. Invest. 8, 33 (1956).CrossRefGoogle Scholar
  6. [6]
    Ball, W. C. Jr., P. B. Stewart, G. S. Newsham and D. V. Bates, Regional pulmonary function studied with Xenon133. J. clin. Invest. 41, 519 (1962).PubMedCrossRefGoogle Scholar
  7. [7]
    Bartels, J., I. W. Severinghaus, R. E. Forster, W. A. Briscoe and D. V. Bates, The respiratory dead space measured by single breath analysis of oxygen, carbon dioxide, nitrogen or helium. J. clin. Invest. 33, 41 (1954).PubMedCrossRefGoogle Scholar
  8. [8]
    Beecher, H. K., H. H. Bradshaw and G. Lindskog, Effect of laparotomy and abdominal distention on lung volume. J. Thoracic. Surg. 2, 440 (1933).Google Scholar
  9. [9]
    Berengo, A., and A. Cutillo, Single-breath analysis of carbon dioxide concentration records. J. appl. Physiol. 16, 522 (1961).Google Scholar
  10. [10]
    Birath, G., Respiratory dead space measurement in a model lung and healthy human subjects according to the single breath method. J. appl. Physiol. 14, 517 (1959).Google Scholar
  11. [11]
    Bjurstedt, H., C. M. Messer, G. Liljestrand and G. Matell, Effects of posture on alveolar-arterial carbon dioxide and oxygen difference and on alveolar dead space on man. Acta physiol. scand. 54, 65 (1962).PubMedCrossRefGoogle Scholar
  12. [12]
    Bohr, Chr., Über die Lungenatmung. Scand. Arch. Physiol. 2, 236 (1891).CrossRefGoogle Scholar
  13. [13]
    Bouhuys, A., and H. J. van Lennep, Effect of body posture on gas distribution in the lungs. J. appl. Physiol. 17, 38 (1962).PubMedGoogle Scholar
  14. [14]
    Briscoe, W. A., R. E. Forster and J. H. Comroe jr., Alveolar ventilation at very low tidal volumes. J. appl. Physiol. 7, 27 (1954).PubMedGoogle Scholar
  15. [15]
    Briscoe, W. A., A method for dealing with data concerning uneven ventilation of the lung and its effects on blood gas transfer. J. appl. Physiol. 14, 291 (1959).PubMedGoogle Scholar
  16. [16]
    Bryan, A. C., C. G. Bentivoglio, F. Beerel, H. Mac Leish, A. Zidulka and D. V. Bates, Factors affecting regional distribution of ventilation and Perfusion in the lung. J. appl. Physiol. 19, 395 (1964).PubMedGoogle Scholar
  17. [17]
    Campbell, J. M. H., C. G. Douglas and F. G. Hobson, The sensitiveness of the respiratory centre to carbonic acid and the dead space during hyperpnoea. J. Physiol. (Lond.) 48, 303 (1914).Google Scholar
  18. [18]
    Chapin, J. L., Relationship between lung volume and breathholding breaking point. J. appl. Physiol. 8, 88 (1955).PubMedGoogle Scholar
  19. [19]
    Du Bois, A. B., A. G. Britt and W. O. Fenn, Alveolar CO2 during the respiratory cycle. J. appl. Physiol. 4, 535 (1952).Google Scholar
  20. [20]
    Du Bois, A. B., Alveolar CO2 and O2 during breathholding, expiration and inspiration. J. appl. Physiol. 5, 1 (1952).Google Scholar
  21. [21]
    Enghoff, H., Volumen inefficax. Upsala Läk. För. Förh. N. F. 44, 191 (1938).Google Scholar
  22. [22]
    Euler, U. S., and G. Liljestrand, Observations on the pulmonary arterial blood pressure in the cat. Acta physiol. scand. 12, 301 (1946).CrossRefGoogle Scholar
  23. [23]
    Feine, U., K. Hayduk, P. Gerhardt und K. Hoffmann, Das Lungenperfusionsszintigramm. Med. Welt 1, 9 (1969).PubMedGoogle Scholar
  24. [24]
    Folkow, B., and J. R. Pappenheimer, Components of respiratory dead space and their variation with pressure breathing and with bronchoaktive drugs. J. appl. Physiol. 8, 102 (1955).PubMedGoogle Scholar
  25. [25]
    Fowler, W. S., Lungfunction studies. II. The respiratory dead space. Am. J. Physiol. 154, 405 (1948).PubMedGoogle Scholar
  26. [26]
    Freemann, J. J., and F. Nunn, Ventilation-perfusion relationships after Hemorrhags. Clin. Sci. 24, 135 (1963).Google Scholar
  27. [27]
    Frumin, M. J., Clinical use of a physiological respirator producing N2O amnesia-analgesia. Anesthesiology. 18, 290 (1957).PubMedCrossRefGoogle Scholar
  28. [28]
    Gerst, P. H., C. Rattenborg and D. A. Holaday, The effect of hemorrhage on pulmonary circulation and respiratory gas exchange. J. clin. Invest. 38, 524 (1959).PubMedCrossRefGoogle Scholar
  29. [29]
    Grosse-Brockhoff, F., und W. Schoedel, Der effektive schädliche Raum. Pflügers Arch. ges. Physiol. 238, 213 (1936).CrossRefGoogle Scholar
  30. [30]
    Haldane, J. S., and J. G. Priestley, The regulation of the lung-ventilation. J. Physiol. (Lond.) 32, 225 (1905).Google Scholar
  31. [31]
    Hertz, C. W., E. Witzleb, H. Freund und M. Schlepper, Veränderung der Atmung bei einseitiger Blockade der A. pulmonalis. Pflügers Arch. ges. Physiol. 276, 280 (1962).CrossRefGoogle Scholar
  32. [32]
    Honda, Y., and M. Ueda, Fluctuations of arterial pH associated with the respiratory cycle in dogs. Jap. J. Physiol. 11, 223 (1961).CrossRefGoogle Scholar
  33. [33]
    Huizinga, E., Über die Physiologie des Bronchialbaums. Pflügers Arch. ges. Physiol. 238, 767 (1937).CrossRefGoogle Scholar
  34. [34]
    Krogh, A., and J. Lindhard, The volume of the dead space in breathing. J. Physiol. (Lond.) 47, 30 (1913).Google Scholar
  35. [35]
    Larson, C. P., and J. W. Severinghaus, Postural variations in dead space and CO2-gradients breathing air and O2. J. appl. Physiol. 17, 417 (1962).PubMedGoogle Scholar
  36. [36]
    Martin, C. J., and A. C. Young, Ventilation perfusion variations within the lung. J. appl. Physiol. 11, 371 (1957).PubMedGoogle Scholar
  37. [37]
    Miller, R. D., W. S. Fowler and H. F. Helmholz jr., Changes in relative volume and ventialtion of the two lungs with change to the lateral decubitus position. J. Labor. a. Clin. Med. 47, 297 (1956).Google Scholar
  38. [38]
    Mothley, H. L., and J. F. Tomashefski, Effect of high and low oxygen levels and intermittent positive pressure breathing on oxygen transport in the lungs in pulmonary fibrosis and emphysema. J. appl. Physiol. 3, 183 (1950).Google Scholar
  39. [39]
    Noe, F. E., Computer analysis of curves from a infrared analyser and screentype airflow-meter. J. appl. Physiol. 18, 149 (1963).Google Scholar
  40. [40]
    Nunn, J. F., and D. W. Hill, Respiratory dead space and arterial to end-tidal CO2-tension difference in anesthetized man. J. appl. Physiol. 15, 383 (1960).PubMedGoogle Scholar
  41. [41]
    Piiper, J., and K. Aoyagi, Analyse des Kreislaufs bei Spontanatmung und künstlicher Beatmung am narkotisierten Hund. Pflügers Arch. ges. Physiol. 284, 131 (1965).Google Scholar
  42. [42]
    Pontoppidan, H., J. Hedley-Whyte, H. H. Bendixen, M. B. Laver and E. P. Radford jr., Ventilation and oxygen requirements during prolonged artifical ventilation in patients with respiratory failure. The New England J. of. Med. 273, 401 (1965).CrossRefGoogle Scholar
  43. [43]
    Rehder, K., P. Teichert und O. Hessler, Der Einfluß der haemorrhagischen Hypotension auf den Gasaustausch in der Lunge während künstlicher Beatmung. Thoraxchirurgie 13, 289 (1965).Google Scholar
  44. [44]
    Riley, R. L., and A. Cournand, (1946) zit. nach Rossier et al. (1958).Google Scholar
  45. [45]
    Riley, R. L., S. Permutt, S. Said, M. Godfrey, T. O. Cheng, J. B. L. Howell and R. H. Shephard, Effect of posture on pulmonary dead space in man. J. appl. Physiol. 14, 339 (1959).PubMedGoogle Scholar
  46. [46]
    Roos, A., H. Dahlstrom and J. P. Murphey, Distribution of inspired air in the lungs. J. appl. Physiol. 7, 645 (1955).PubMedGoogle Scholar
  47. [47]
    Rossier, P. H., und H. Mean (1942) zit. nach Rossier et al. (1958).Google Scholar
  48. [48]
    Rossier, P. H., and A. Bühlmann, The respiratory dead space. Physiologic. Rev. 35, 860 (1955).Google Scholar
  49. [49]
    Rossier, P. H., A. Bühlmann und K. Wiesinger, Physiologie und Pathophysiologie der Atmung. Springer, Berlin-Göttingen-Heidelberg (1958).CrossRefGoogle Scholar
  50. [50]
    Scholander, P. F., Analyser for accurate estimation of respiratory gases in one half cubic centimeter samples. J. of Biol. Chem. 167, 235 (1947).Google Scholar
  51. [51]
    Severinghaus, J. W. and M. Stupfel, Respiratory dead space increase following atropine in man and atropine, vagal organic blockade and hyperthermia in dogs. J. appl. Physiol. 8, 81 (1955).PubMedGoogle Scholar
  52. [52]
    Severinghaus, J. W., and M. Stupfel, Alveolar dead space as an index of distribution of blood flow in pulmonary capillaries. J. appl. Physiol. 10, 335 (1957).PubMedGoogle Scholar
  53. [53]
    Severinghaus, J. W., M. Stupfel and A. F. Bradley, Alveolar dead space and arterial to end tidal carbon dioxide differences during hyperthermia in dog and man. J. appl. Physiol. 10, 349 (1957).PubMedGoogle Scholar
  54. [54]
    Severinghaus, J. W., E. W. Swenson, Th. N. Finley, M. T. Lategola and J. Williams, Unilateral hypoventilation produced in dogs by occluding one pulmonary artery. J. appl. Physiol. 16, 53 (1961).PubMedGoogle Scholar
  55. [55]
    Siebeck, R., Über den Gasaustausch zwischen Außenluft und Alveolen. II. Über die Bedeutung und Bestimmung des »schädlichen Raumes« bei der Atmung. Scand. Physiol. 25, 81 (1911).Google Scholar
  56. [56]
    Standfuss, K., Die Auswirkung der physiologischen Änderungen des Ventilations-Perfusionsverhältnisses in der Zeit auf den funktionellen Totraum. In Vorbereitung zum Druck.Google Scholar
  57. [57]
    Stegemann, J., Die Abhängigkeit des funktionellen Totraums von Beatmungstiefe und Beatmungsfrequenz bei künstlicher Respiration. Pflügers Arch. ges. Physiol. 276, 398 (1963).CrossRefGoogle Scholar
  58. [58]
    Stegemann, J., und K. W. Heinrich, Studien über den respiratorischen Totraum bei körperlicher Arbeit und bei künstlicher Beatmung. Forschungsberichte des Landes Nordrhein-Westfalen Nr. 1842 (1967).CrossRefGoogle Scholar
  59. [59]
    Ulmer, W. T., Untersuchungen bei Menschen und Hunden über die Wirksamkeit herzsynchroner Mischungsvorgänge in den Atemwegen. Pflüg ers Arch. ges. Physiol. 268, 460 (1959).CrossRefGoogle Scholar
  60. [60]
    Ulmer, W. T., und M. Stammberger, Untersuchungen über den funktionellen Totraum bei Arbeit und bei willkürlich vertiefter Atmung. Pflügers Arch. ges. Physiol. 268, 484 (1959).CrossRefGoogle Scholar
  61. [61]
    Ulmer, W. T., und G. Reichel, Untersuchungen zum alveolär-arteriellen Kohlensäuredruckgradienten. Physiologie und Pathologie des Gasaustausches in der Lunge. Bad Oeynhauser Gespräche, 4, 53 (1961), Springer, Berlin-Göttingen-Heidelberg (1961).Google Scholar
  62. [62]
    Ulmer, W. T., F. Hertle, L. Krauss und X. A. Malikiosis, Untersuchungen über die interalveoläre Ventilation und über die Lageabhängigkeit des Ventilations-Perfusions-verhältnisses in der Lunge. Pflügers Arch. ges. Physiol. 275, 628 (1962).CrossRefGoogle Scholar
  63. [63]
    Visser, B. F., Pulmonary diffusion of carbon dioxide. Phys. in Med. Biol. 5, 155 (1960).CrossRefGoogle Scholar
  64. [64]
    West, J. B., K. T. Fowler, P. Hugh-Jones and T. V. O’Donnell, Measurement of the ventilation-perfusion ratio inequality in the lung by the analysis of a single expirate. Clin. Sci. 16, 549 (1957).PubMedGoogle Scholar
  65. [65]
    West, J. B., and C. T. Dollary, Distribution of blood flow and ventilation-perfusion ratio in the lung measured with radioaktive CO2. J. appl. Physiol. 15, 405 (1960).PubMedGoogle Scholar
  66. [66]
    West, J. B., Regional difference in gas exchange in the lung of erect man. J. appl. Physiol. 17, 893 (1962).PubMedGoogle Scholar
  67. [67]
    Williams, M. H., and C. M. Rayford, Effect of variation of tidal volume in size of physiological dead space in dogs. J. appl. Physiol. 9, 30 (1956).PubMedGoogle Scholar
  68. [68]
    Wilson, R. H., B. E. Jay, P. L. Richburg and R. Evans, An evaluation of the single-breath technique for measuring anatomic respiratory dead space with nitrogenmeter. Amer. J. med. Sci. 232, 67 (1956).PubMedCrossRefGoogle Scholar
  69. [69]
    Witschi, H. P., und M. Scherrer, Bedeutung und Messung des alveolären Totraums. Helv. med. Acta 27, 155 (1960).PubMedGoogle Scholar
  70. [70]
    Zuntz, N., Physiologie der Blutgase und des respiratorischen Gaswechseis. Hermanns Handbuch der Physiologie Band IV, Teil 2, Seite 1 (1882).Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1970

Authors and Affiliations

  • Hermann Kämmerer
    • 1
  • Klaus Standfuß
    • 2
  • Jürgen Stegemann
    • 3
  1. 1.Institut für Normale und Pathologische PhysiologieUniversität zu KölnDeutschland
  2. 2.Abteilung für AnästhesiologieChirurgische Universitätsklinik KölnDeutschland
  3. 3.Physiologisches InstitutDeutschen Sporthochschule KölnDeutschland

Personalised recommendations